Cargando…

MAPS: Pathologist-level cell type annotation from tissue images through machine learning

Highly multiplexed protein imaging is emerging as a potent technique for analyzing protein distribution within cells and tissues in their native context. However, existing cell annotation methods utilizing high-plex spatial proteomics data are resource intensive and necessitate iterative expert inpu...

Descripción completa

Detalles Bibliográficos
Autores principales: Shaban, Muhammad, Bai, Yunhao, Qiu, Huaying, Mao, Shulin, Yeung, Jason, Yeo, Yao Yu, Shanmugam, Vignesh, Chen, Han, Zhu, Bokai, Nolan, Garry P., Shipp, Margaret A., Rodig, Scott J., Jiang, Sizun, Mahmood, Faisal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327211/
https://www.ncbi.nlm.nih.gov/pubmed/37425872
http://dx.doi.org/10.1101/2023.06.25.546474
Descripción
Sumario:Highly multiplexed protein imaging is emerging as a potent technique for analyzing protein distribution within cells and tissues in their native context. However, existing cell annotation methods utilizing high-plex spatial proteomics data are resource intensive and necessitate iterative expert input, thereby constraining their scalability and practicality for extensive datasets. We introduce MAPS (Machine learning for Analysis of Proteomics in Spatial biology), a machine learning approach facilitating rapid and precise cell type identification with human-level accuracy from spatial proteomics data. Validated on multiple in-house and publicly available MIBI and CODEX datasets, MAPS outperforms current annotation techniques in terms of speed and accuracy, achieving pathologist-level precision even for challenging cell types, including tumor cells of immune origin. By democratizing rapidly deployable and scalable machine learning annotation, MAPS holds significant potential to expedite advances in tissue biology and disease comprehension.