Cargando…
Machine Learning Interpretability Methods to Characterize Brain Network Dynamics in Epilepsy
The rapid adoption of machine learning (ML) algorithms in a wide range of biomedical applications has highlighted issues of trust and the lack of understanding regarding the results generated by ML algorithms. Recent studies have focused on developing interpretable ML models and establish guidelines...
Autores principales: | Upadhyaya, Dipak P., Prantzalos, Katrina, Thyagaraj, Suraj, Shafiabadi, Nassim, Fernandez-BacaVaca, Guadalupe, Sivagnanam, Subhashini, Majumdar, Amitava, Sahoo, Satya S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327223/ https://www.ncbi.nlm.nih.gov/pubmed/37425941 http://dx.doi.org/10.1101/2023.06.25.23291874 |
Ejemplares similares
-
Ontology-based feature engineering in machine learning workflows for heterogeneous epilepsy patient records
por: Sahoo, Satya S., et al.
Publicado: (2022) -
An Integrative Approach to Study Structural and Functional Network Connectivity in Epilepsy Using Imaging and Signal Data
por: Carr, Sarah J. A., et al.
Publicado: (2021) -
NEMAR: an open access data, tools and compute resource operating on neuroelectromagnetic data
por: Delorme, Arnaud, et al.
Publicado: (2022) -
Autoimmune musicogenic epilepsy associated with anti‐glutamic acid decarboxylase antibodies and Stiff‐person syndrome
por: Jesus‐Ribeiro, Joana, et al.
Publicado: (2019) -
Stereo-EEG in Tuberous Sclerosis Complex
por: Park, Jun T., et al.
Publicado: (2020)