Cargando…

Generalizable and Automated Classification of TNM Stage from Pathology Reports with External Validation

Cancer staging is an essential clinical attribute informing patient prognosis and clinical trial eligibility. However, it is not routinely recorded in structured electronic health records. Here, we present a generalizable method for the automated classification of TNM stage directly from pathology r...

Descripción completa

Detalles Bibliográficos
Autores principales: Kefeli, Jenna, Tatonetti, Nicholas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327265/
https://www.ncbi.nlm.nih.gov/pubmed/37425701
http://dx.doi.org/10.1101/2023.06.26.23291912
Descripción
Sumario:Cancer staging is an essential clinical attribute informing patient prognosis and clinical trial eligibility. However, it is not routinely recorded in structured electronic health records. Here, we present a generalizable method for the automated classification of TNM stage directly from pathology report text. We train a BERT-based model using publicly available pathology reports across approximately 7,000 patients and 23 cancer types. We explore the use of different model types, with differing input sizes, parameters, and model architectures. Our final model goes beyond term-extraction, inferring TNM stage from context when it is not included in the report text explicitly. As external validation, we test our model on almost 8,000 pathology reports from Columbia University Medical Center, finding that our trained model achieved an AU-ROC of 0.815–0.942. This suggests that our model can be applied broadly to other institutions without additional institution-specific fine-tuning.