Cargando…
A wide range of missing imputation approaches in longitudinal data: a simulation study and real data analysis
BACKGROUND: Missing data is a pervasive problem in longitudinal data analysis. Several single-imputation (SI) and multiple-imputation (MI) approaches have been proposed to address this issue. In this study, for the first time, the function of the longitudinal regression tree algorithm as a non-param...
Autores principales: | Jahangiri, Mina, Kazemnejad, Anoshirvan, Goldfeld, Keith S., Daneshpour, Maryam S., Mostafaei, Shayan, Khalili, Davood, Moghadas, Mohammad Reza, Akbarzadeh, Mahdi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327316/ https://www.ncbi.nlm.nih.gov/pubmed/37415114 http://dx.doi.org/10.1186/s12874-023-01968-8 |
Ejemplares similares
-
Regularized Machine Learning Models for Prediction of Metabolic
Syndrome Using GCKR, APOA5, and BUD13 Gene Variants:
Tehran Cardiometabolic Genetic Study
por: Alipour, Nadia, et al.
Publicado: (2023) -
Multiple Imputation of Missing Composite Outcomes in Longitudinal Data
por: O’Keeffe, Aidan G., et al.
Publicado: (2016) -
Flexible imputation of missing data
por: van Buuren, Stef
Publicado: (2018) -
Missing Data and Imputation Methods
por: Schober, Patrick, et al.
Publicado: (2020) -
Chronic Obstructive Pulmonary Disease: Novel Genes
Detection with Penalized Logistic Regression
por: Gohari, Kimiya, et al.
Publicado: (2023)