Cargando…
HUST bearing: a practical dataset for ball bearing fault diagnosis
OBJECTIVES: The rapid growth of machine learning methods has led to an increase in the demand for data. For bearing fault diagnosis, the data acquisition is time-consuming with complicated processes. Existing datasets are only focused on only one type of bearing, which limits real-world applications...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327369/ https://www.ncbi.nlm.nih.gov/pubmed/37415236 http://dx.doi.org/10.1186/s13104-023-06400-4 |
Sumario: | OBJECTIVES: The rapid growth of machine learning methods has led to an increase in the demand for data. For bearing fault diagnosis, the data acquisition is time-consuming with complicated processes. Existing datasets are only focused on only one type of bearing, which limits real-world applications. Therefore, the objective of this work is to propose a diverse dataset for ball bearing fault diagnosis based on vibration. DATA DESCRIPTION: In this work, we introduce a practical dataset named HUST bearing, which provides a large set of vibration data on different ball bearings. This dataset contains 99 raw vibration signals of 6 types of defects (inner crack, outer crack, ball crack, and their 2-combinations) on 5 types of bearing (6204, 6205, 6206, 6207, and 6208) at 3 working conditions (0 W, 200 W, and 400 W). Each vibration signal is sampled at a rate of 51,200 samples per second for 10 s. The data acquisition system is elaborately designed with high reliability. |
---|