Cargando…

Lifelong endurance exercise and its relation with coronary atherosclerosis

AIMS: The impact of long-term endurance sport participation (on top of a healthy lifestyle) on coronary atherosclerosis and acute cardiac events remains controversial. METHODS AND RESULTS: The Master@Heart study is a well-balanced prospective observational cohort study. Overall, 191 lifelong master...

Descripción completa

Detalles Bibliográficos
Autores principales: De Bosscher, Ruben, Dausin, Christophe, Claus, Piet, Bogaert, Jan, Dymarkowski, Steven, Goetschalckx, Kaatje, Ghekiere, Olivier, Van De Heyning, Caroline M, Van Herck, Paul, Paelinck, Bernard, Addouli, Haroun El, La Gerche, André, Herbots, Lieven, Willems, Rik, Heidbuchel, Hein, Claessen, Guido
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327878/
https://www.ncbi.nlm.nih.gov/pubmed/36881712
http://dx.doi.org/10.1093/eurheartj/ehad152
Descripción
Sumario:AIMS: The impact of long-term endurance sport participation (on top of a healthy lifestyle) on coronary atherosclerosis and acute cardiac events remains controversial. METHODS AND RESULTS: The Master@Heart study is a well-balanced prospective observational cohort study. Overall, 191 lifelong master endurance athletes, 191 late-onset athletes (endurance sports initiation after 30 years of age), and 176 healthy non-athletes, all male with a low cardiovascular risk profile, were included. Peak oxygen uptake quantified fitness. The primary endpoint was the prevalence of coronary plaques (calcified, mixed, and non-calcified) on computed tomography coronary angiography. Analyses were corrected for multiple cardiovascular risk factors. The median age was 55 (50–60) years in all groups. Lifelong and late-onset athletes had higher peak oxygen uptake than non-athletes [159 (143–177) vs. 155 (138–169) vs. 122 (108–138) % predicted]. Lifelong endurance sports was associated with having ≥1 coronary plaque [odds ratio (OR) 1.86, 95% confidence interval (CI) 1.17–2.94], ≥ 1 proximal plaque (OR 1.96, 95% CI 1.24–3.11), ≥ 1 calcified plaques (OR 1.58, 95% CI 1.01–2.49), ≥ 1 calcified proximal plaque (OR 2.07, 95% CI 1.28–3.35), ≥ 1 non-calcified plaque (OR 1.95, 95% CI 1.12–3.40), ≥ 1 non-calcified proximal plaque (OR 2.80, 95% CI 1.39–5.65), and ≥1 mixed plaque (OR 1.78, 95% CI 1.06–2.99) as compared to a healthy non-athletic lifestyle. CONCLUSION: Lifelong endurance sport participation is not associated with a more favourable coronary plaque composition compared to a healthy lifestyle. Lifelong endurance athletes had more coronary plaques, including more non-calcified plaques in proximal segments, than fit and healthy individuals with a similarly low cardiovascular risk profile. Longitudinal research is needed to reconcile these findings with the risk of cardiovascular events at the higher end of the endurance exercise spectrum.