Cargando…
Deep-agriNet: a lightweight attention-based encoder-decoder framework for crop identification using multispectral images
The field of computer vision has shown great potential for the identification of crops at large scales based on multispectral images. However, the challenge in designing crop identification networks lies in striking a balance between accuracy and a lightweight framework. Furthermore, there is a lack...
Autores principales: | Hu, Yimin, Meng, Ao, Wu, Yanjun, Zou, Le, Jin, Zhou, Xu, Taosheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327894/ https://www.ncbi.nlm.nih.gov/pubmed/37426958 http://dx.doi.org/10.3389/fpls.2023.1124939 |
Ejemplares similares
-
The power of transfer learning in agricultural applications: AgriNet
por: Al Sahili, Zahraa, et al.
Publicado: (2022) -
MAC-ResNet: Knowledge Distillation Based Lightweight Multiscale-Attention-Crop-ResNet for Eyelid Tumors Detection and Classification
por: Huang, Xingru, et al.
Publicado: (2022) -
Efficient U-Net Architecture with Multiple Encoders and Attention Mechanism Decoders for Brain Tumor Segmentation
por: Aboussaleh, Ilyasse, et al.
Publicado: (2023) -
SELDNet: Sequenced encoder and lightweight decoder network for COVID-19 infection region segmentation()
por: Fan, Xiaole, et al.
Publicado: (2023) -
Knowledge Tracing via Attention Enhanced Encoder-Decoder
por: Zhang, Kai, et al.
Publicado: (2022)