Cargando…

A Glimpse into the Genome-wide DNA Methylation Changes in 6-hydroxydopamine-induced In Vitro Model of Parkinson’s Disease

A cell-based model of Parkinson’s disease (PD) is a well-established in vitro experimental prototype to investigate the disease mechanism and therapeutic approach for a potential anti-PD drug. The SH-SY5Y human neuroblastoma cells and 6-OHDA combo is one of the many neurotoxin-induced neuronal cell...

Descripción completa

Detalles Bibliográficos
Autores principales: Magalingam, Kasthuri Bai, Somanath, Sushela Devi, Radhakrishnan, Ammu Kutty
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society for Brain and Neural Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327930/
https://www.ncbi.nlm.nih.gov/pubmed/37403221
http://dx.doi.org/10.5607/en22035
Descripción
Sumario:A cell-based model of Parkinson’s disease (PD) is a well-established in vitro experimental prototype to investigate the disease mechanism and therapeutic approach for a potential anti-PD drug. The SH-SY5Y human neuroblastoma cells and 6-OHDA combo is one of the many neurotoxin-induced neuronal cell models employed in numerous neuroscience-related research for discovering neuroprotective drug compounds. Emerging studies have reported a significant correlation between PD and epigenetic alterations, particularly DNA methylation. However, the DNA methylation changes of PD-related CpG sites on the 6-OHDA-induced toxicity on human neuronal cells have not yet been reported. We performed a genome-wide association study (GWAS) using Infinium Epic beadchip array surveying 850000 CpG sites in differentiated human neuroblastoma cells exposed to 6-OHDA. We identified 236 differentially methylated probes (DMPs) or 163 differentially methylated regions (DMRs) in 6-OHDA treated differentiated neuroblastoma cells than the untreated reference group with p<0.01, Δbeta cut-off of 0.1. Among 236 DMPs, hypermethylated DMPs are 110 (47%), whereas 126 (53%) are hypomethylated. Our bioinformatic analysis revealed 3 DMRs that are significantly hypermethylated and associated with neurological disorders, namely AKT1, ITPR1 and GNG7. This preliminary study demonstrates the methylation status of PD-related CpGs in the 6-OHDA-induced toxicity in the differentiated neuroblastoma cells model.