Cargando…

Lipopolysaccharide transport regulates bacterial sensitivity to a cell wall-degrading intermicrobial toxin

Gram-negative bacteria can antagonize neighboring microbes using a type VI secretion system (T6SS) to deliver toxins that target different essential cellular features. Despite the conserved nature of these targets, T6SS potency can vary across recipient species. To understand the functional basis of...

Descripción completa

Detalles Bibliográficos
Autores principales: Trotta, Kristine L., Hayes, Beth M., Schneider, Johannes P., Wang, Jing, Todor, Horia, Rockefeller Grimes, Patrick, Zhao, Ziyi, Hatleberg, William L., Silvis, Melanie R., Kim, Rachel, Koo, Byoung Mo, Basler, Marek, Chou, Seemay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328246/
https://www.ncbi.nlm.nih.gov/pubmed/37363922
http://dx.doi.org/10.1371/journal.ppat.1011454
_version_ 1785069753670303744
author Trotta, Kristine L.
Hayes, Beth M.
Schneider, Johannes P.
Wang, Jing
Todor, Horia
Rockefeller Grimes, Patrick
Zhao, Ziyi
Hatleberg, William L.
Silvis, Melanie R.
Kim, Rachel
Koo, Byoung Mo
Basler, Marek
Chou, Seemay
author_facet Trotta, Kristine L.
Hayes, Beth M.
Schneider, Johannes P.
Wang, Jing
Todor, Horia
Rockefeller Grimes, Patrick
Zhao, Ziyi
Hatleberg, William L.
Silvis, Melanie R.
Kim, Rachel
Koo, Byoung Mo
Basler, Marek
Chou, Seemay
author_sort Trotta, Kristine L.
collection PubMed
description Gram-negative bacteria can antagonize neighboring microbes using a type VI secretion system (T6SS) to deliver toxins that target different essential cellular features. Despite the conserved nature of these targets, T6SS potency can vary across recipient species. To understand the functional basis of intrinsic T6SS susceptibility, we screened for essential Escherichia coli (Eco) genes that affect its survival when antagonized by a cell wall-degrading T6SS toxin from Pseudomonas aeruginosa, Tae1. We revealed genes associated with both the cell wall and a separate layer of the cell envelope, lipopolysaccharide, that modulate Tae1 toxicity in vivo. Disruption of genes in early lipopolysaccharide biosynthesis provided Eco with novel resistance to Tae1, despite significant cell wall degradation. These data suggest that Tae1 toxicity is determined not only by direct substrate damage, but also by indirect cell envelope homeostasis activities. We also found that Tae1-resistant Eco exhibited reduced cell wall synthesis and overall slowed growth, suggesting that reactive cell envelope maintenance pathways could promote, not prevent, self-lysis. Together, our study reveals the complex functional underpinnings of susceptibility to Tae1 and T6SS which regulate the impact of toxin-substrate interactions in vivo.
format Online
Article
Text
id pubmed-10328246
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-103282462023-07-08 Lipopolysaccharide transport regulates bacterial sensitivity to a cell wall-degrading intermicrobial toxin Trotta, Kristine L. Hayes, Beth M. Schneider, Johannes P. Wang, Jing Todor, Horia Rockefeller Grimes, Patrick Zhao, Ziyi Hatleberg, William L. Silvis, Melanie R. Kim, Rachel Koo, Byoung Mo Basler, Marek Chou, Seemay PLoS Pathog Research Article Gram-negative bacteria can antagonize neighboring microbes using a type VI secretion system (T6SS) to deliver toxins that target different essential cellular features. Despite the conserved nature of these targets, T6SS potency can vary across recipient species. To understand the functional basis of intrinsic T6SS susceptibility, we screened for essential Escherichia coli (Eco) genes that affect its survival when antagonized by a cell wall-degrading T6SS toxin from Pseudomonas aeruginosa, Tae1. We revealed genes associated with both the cell wall and a separate layer of the cell envelope, lipopolysaccharide, that modulate Tae1 toxicity in vivo. Disruption of genes in early lipopolysaccharide biosynthesis provided Eco with novel resistance to Tae1, despite significant cell wall degradation. These data suggest that Tae1 toxicity is determined not only by direct substrate damage, but also by indirect cell envelope homeostasis activities. We also found that Tae1-resistant Eco exhibited reduced cell wall synthesis and overall slowed growth, suggesting that reactive cell envelope maintenance pathways could promote, not prevent, self-lysis. Together, our study reveals the complex functional underpinnings of susceptibility to Tae1 and T6SS which regulate the impact of toxin-substrate interactions in vivo. Public Library of Science 2023-06-26 /pmc/articles/PMC10328246/ /pubmed/37363922 http://dx.doi.org/10.1371/journal.ppat.1011454 Text en © 2023 Trotta et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Trotta, Kristine L.
Hayes, Beth M.
Schneider, Johannes P.
Wang, Jing
Todor, Horia
Rockefeller Grimes, Patrick
Zhao, Ziyi
Hatleberg, William L.
Silvis, Melanie R.
Kim, Rachel
Koo, Byoung Mo
Basler, Marek
Chou, Seemay
Lipopolysaccharide transport regulates bacterial sensitivity to a cell wall-degrading intermicrobial toxin
title Lipopolysaccharide transport regulates bacterial sensitivity to a cell wall-degrading intermicrobial toxin
title_full Lipopolysaccharide transport regulates bacterial sensitivity to a cell wall-degrading intermicrobial toxin
title_fullStr Lipopolysaccharide transport regulates bacterial sensitivity to a cell wall-degrading intermicrobial toxin
title_full_unstemmed Lipopolysaccharide transport regulates bacterial sensitivity to a cell wall-degrading intermicrobial toxin
title_short Lipopolysaccharide transport regulates bacterial sensitivity to a cell wall-degrading intermicrobial toxin
title_sort lipopolysaccharide transport regulates bacterial sensitivity to a cell wall-degrading intermicrobial toxin
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328246/
https://www.ncbi.nlm.nih.gov/pubmed/37363922
http://dx.doi.org/10.1371/journal.ppat.1011454
work_keys_str_mv AT trottakristinel lipopolysaccharidetransportregulatesbacterialsensitivitytoacellwalldegradingintermicrobialtoxin
AT hayesbethm lipopolysaccharidetransportregulatesbacterialsensitivitytoacellwalldegradingintermicrobialtoxin
AT schneiderjohannesp lipopolysaccharidetransportregulatesbacterialsensitivitytoacellwalldegradingintermicrobialtoxin
AT wangjing lipopolysaccharidetransportregulatesbacterialsensitivitytoacellwalldegradingintermicrobialtoxin
AT todorhoria lipopolysaccharidetransportregulatesbacterialsensitivitytoacellwalldegradingintermicrobialtoxin
AT rockefellergrimespatrick lipopolysaccharidetransportregulatesbacterialsensitivitytoacellwalldegradingintermicrobialtoxin
AT zhaoziyi lipopolysaccharidetransportregulatesbacterialsensitivitytoacellwalldegradingintermicrobialtoxin
AT hatlebergwilliaml lipopolysaccharidetransportregulatesbacterialsensitivitytoacellwalldegradingintermicrobialtoxin
AT silvismelanier lipopolysaccharidetransportregulatesbacterialsensitivitytoacellwalldegradingintermicrobialtoxin
AT kimrachel lipopolysaccharidetransportregulatesbacterialsensitivitytoacellwalldegradingintermicrobialtoxin
AT koobyoungmo lipopolysaccharidetransportregulatesbacterialsensitivitytoacellwalldegradingintermicrobialtoxin
AT baslermarek lipopolysaccharidetransportregulatesbacterialsensitivitytoacellwalldegradingintermicrobialtoxin
AT chouseemay lipopolysaccharidetransportregulatesbacterialsensitivitytoacellwalldegradingintermicrobialtoxin