Cargando…
Reperfusion after hypoxia-ischemia exacerbates brain injury with compensatory activation of the anti- ferroptosis system: based on a novel rat model
[Image: see text] Hypoxic-ischemic encephalopathy, which predisposes to neonatal death and neurological sequelae, has a high morbidity, but there is still a lack of effective prevention and treatment in clinical practice. To better understand the pathophysiological mechanism underlying hypoxic-ische...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328270/ https://www.ncbi.nlm.nih.gov/pubmed/37056142 http://dx.doi.org/10.4103/1673-5374.369117 |
_version_ | 1785069759467880448 |
---|---|
author | Zhang, Tian-Lei Zhang, Zhi-Wei Lin, Wei Lin, Xin-Ru Lin, Ke-Xin Fang, Ming-Chu Zhu, Jiang-Hu Guo, Xiao-Ling Lin, Zhen-Lang |
author_facet | Zhang, Tian-Lei Zhang, Zhi-Wei Lin, Wei Lin, Xin-Ru Lin, Ke-Xin Fang, Ming-Chu Zhu, Jiang-Hu Guo, Xiao-Ling Lin, Zhen-Lang |
author_sort | Zhang, Tian-Lei |
collection | PubMed |
description | [Image: see text] Hypoxic-ischemic encephalopathy, which predisposes to neonatal death and neurological sequelae, has a high morbidity, but there is still a lack of effective prevention and treatment in clinical practice. To better understand the pathophysiological mechanism underlying hypoxic-ischemic encephalopathy, in this study we compared hypoxic-ischemic reperfusion brain injury and simple hypoxic-ischemic brain injury in neonatal rats. First, based on the conventional Rice-Vannucci model of hypoxic-ischemic encephalopathy, we established a rat model of hypoxic-ischemic reperfusion brain injury by creating a common carotid artery muscle bridge. Then we performed tandem mass tag-based proteomic analysis to identify differentially expressed proteins between the hypoxic-ischemic reperfusion brain injury model and the conventional Rice-Vannucci model and found that the majority were mitochondrial proteins. We also performed transmission electron microscopy and found typical characteristics of ferroptosis, including mitochondrial shrinkage, ruptured mitochondrial membranes, and reduced or absent mitochondrial cristae. Further, both rat models showed high levels of glial fibrillary acidic protein and low levels of myelin basic protein, which are biological indicators of hypoxic-ischemic brain injury and indicate similar degrees of damage. Finally, we found that ferroptosis-related Ferritin (Fth1) and glutathione peroxidase 4 were expressed at higher levels in the brain tissue of rats with hypoxic-ischemic reperfusion brain injury than in rats with simple hypoxic-ischemic brain injury. Based on these results, it appears that the rat model of hypoxic-ischemic reperfusion brain injury is more closely related to the pathophysiology of clinical reperfusion. Reperfusion not only aggravates hypoxic-ischemic brain injury but also activates the anti-ferroptosis system. |
format | Online Article Text |
id | pubmed-10328270 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Wolters Kluwer - Medknow |
record_format | MEDLINE/PubMed |
spelling | pubmed-103282702023-07-08 Reperfusion after hypoxia-ischemia exacerbates brain injury with compensatory activation of the anti- ferroptosis system: based on a novel rat model Zhang, Tian-Lei Zhang, Zhi-Wei Lin, Wei Lin, Xin-Ru Lin, Ke-Xin Fang, Ming-Chu Zhu, Jiang-Hu Guo, Xiao-Ling Lin, Zhen-Lang Neural Regen Res Research Article [Image: see text] Hypoxic-ischemic encephalopathy, which predisposes to neonatal death and neurological sequelae, has a high morbidity, but there is still a lack of effective prevention and treatment in clinical practice. To better understand the pathophysiological mechanism underlying hypoxic-ischemic encephalopathy, in this study we compared hypoxic-ischemic reperfusion brain injury and simple hypoxic-ischemic brain injury in neonatal rats. First, based on the conventional Rice-Vannucci model of hypoxic-ischemic encephalopathy, we established a rat model of hypoxic-ischemic reperfusion brain injury by creating a common carotid artery muscle bridge. Then we performed tandem mass tag-based proteomic analysis to identify differentially expressed proteins between the hypoxic-ischemic reperfusion brain injury model and the conventional Rice-Vannucci model and found that the majority were mitochondrial proteins. We also performed transmission electron microscopy and found typical characteristics of ferroptosis, including mitochondrial shrinkage, ruptured mitochondrial membranes, and reduced or absent mitochondrial cristae. Further, both rat models showed high levels of glial fibrillary acidic protein and low levels of myelin basic protein, which are biological indicators of hypoxic-ischemic brain injury and indicate similar degrees of damage. Finally, we found that ferroptosis-related Ferritin (Fth1) and glutathione peroxidase 4 were expressed at higher levels in the brain tissue of rats with hypoxic-ischemic reperfusion brain injury than in rats with simple hypoxic-ischemic brain injury. Based on these results, it appears that the rat model of hypoxic-ischemic reperfusion brain injury is more closely related to the pathophysiology of clinical reperfusion. Reperfusion not only aggravates hypoxic-ischemic brain injury but also activates the anti-ferroptosis system. Wolters Kluwer - Medknow 2023-03-03 /pmc/articles/PMC10328270/ /pubmed/37056142 http://dx.doi.org/10.4103/1673-5374.369117 Text en Copyright: © 2023 Neural Regeneration Research https://creativecommons.org/licenses/by-nc-sa/4.0/This is an open access journal, and articles are distributed under the terms of the Creative Commons AttributionNonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. |
spellingShingle | Research Article Zhang, Tian-Lei Zhang, Zhi-Wei Lin, Wei Lin, Xin-Ru Lin, Ke-Xin Fang, Ming-Chu Zhu, Jiang-Hu Guo, Xiao-Ling Lin, Zhen-Lang Reperfusion after hypoxia-ischemia exacerbates brain injury with compensatory activation of the anti- ferroptosis system: based on a novel rat model |
title | Reperfusion after hypoxia-ischemia exacerbates brain injury with compensatory activation of the anti- ferroptosis system: based on a novel rat model |
title_full | Reperfusion after hypoxia-ischemia exacerbates brain injury with compensatory activation of the anti- ferroptosis system: based on a novel rat model |
title_fullStr | Reperfusion after hypoxia-ischemia exacerbates brain injury with compensatory activation of the anti- ferroptosis system: based on a novel rat model |
title_full_unstemmed | Reperfusion after hypoxia-ischemia exacerbates brain injury with compensatory activation of the anti- ferroptosis system: based on a novel rat model |
title_short | Reperfusion after hypoxia-ischemia exacerbates brain injury with compensatory activation of the anti- ferroptosis system: based on a novel rat model |
title_sort | reperfusion after hypoxia-ischemia exacerbates brain injury with compensatory activation of the anti- ferroptosis system: based on a novel rat model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328270/ https://www.ncbi.nlm.nih.gov/pubmed/37056142 http://dx.doi.org/10.4103/1673-5374.369117 |
work_keys_str_mv | AT zhangtianlei reperfusionafterhypoxiaischemiaexacerbatesbraininjurywithcompensatoryactivationoftheantiferroptosissystembasedonanovelratmodel AT zhangzhiwei reperfusionafterhypoxiaischemiaexacerbatesbraininjurywithcompensatoryactivationoftheantiferroptosissystembasedonanovelratmodel AT linwei reperfusionafterhypoxiaischemiaexacerbatesbraininjurywithcompensatoryactivationoftheantiferroptosissystembasedonanovelratmodel AT linxinru reperfusionafterhypoxiaischemiaexacerbatesbraininjurywithcompensatoryactivationoftheantiferroptosissystembasedonanovelratmodel AT linkexin reperfusionafterhypoxiaischemiaexacerbatesbraininjurywithcompensatoryactivationoftheantiferroptosissystembasedonanovelratmodel AT fangmingchu reperfusionafterhypoxiaischemiaexacerbatesbraininjurywithcompensatoryactivationoftheantiferroptosissystembasedonanovelratmodel AT zhujianghu reperfusionafterhypoxiaischemiaexacerbatesbraininjurywithcompensatoryactivationoftheantiferroptosissystembasedonanovelratmodel AT guoxiaoling reperfusionafterhypoxiaischemiaexacerbatesbraininjurywithcompensatoryactivationoftheantiferroptosissystembasedonanovelratmodel AT linzhenlang reperfusionafterhypoxiaischemiaexacerbatesbraininjurywithcompensatoryactivationoftheantiferroptosissystembasedonanovelratmodel |