Cargando…
TUG-891 inhibits neuronal endoplasmic reticulum stress and pyroptosis activation and protects neurons in a mouse model of intraventricular hemorrhage
[Image: see text] Pyroptosis plays an important role in hemorrhagic stroke. Excessive endoplasmic reticulum stress can cause endoplasmic reticulum dysfunction and cellular pyroptosis by regulating the nucleotide-binding oligomerization domain and leucine-rich repeat pyrin domain-containing protein 3...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328290/ https://www.ncbi.nlm.nih.gov/pubmed/37056148 http://dx.doi.org/10.4103/1673-5374.369116 |
Sumario: | [Image: see text] Pyroptosis plays an important role in hemorrhagic stroke. Excessive endoplasmic reticulum stress can cause endoplasmic reticulum dysfunction and cellular pyroptosis by regulating the nucleotide-binding oligomerization domain and leucine-rich repeat pyrin domain-containing protein 3 (NLRP3) pathway. However, the relationship between pyroptosis and endoplasmic reticulum stress after intraventricular hemorrhage is unclear. In this study, we established a mouse model of intraventricular hemorrhage and found pyroptosis and endoplasmic reticulum stress in brain tissue. Intraperitoneal injection of the selective GPR120 agonist TUG-891 inhibited endoplasmic reticulum stress, pyroptosis, and inflammation and protected neurons. The neuroprotective effect of TUG-891 appears related to inhibition of endoplasmic reticulum stress and pyroptosis activation. |
---|