Cargando…
The role of Rho GTPase family in cochlear hair cells and hearing
Rho GTPases are essential regulators of the actin cytoskeleton. They are involved in various physiological and biochemical processes such as the regulation of cytoskeleton dynamics, development, proliferation, survival, and regeneration. During the development of cochlear hair cells, Rho GTPases are...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328291/ https://www.ncbi.nlm.nih.gov/pubmed/37056125 http://dx.doi.org/10.4103/1673-5374.369101 |
Sumario: | Rho GTPases are essential regulators of the actin cytoskeleton. They are involved in various physiological and biochemical processes such as the regulation of cytoskeleton dynamics, development, proliferation, survival, and regeneration. During the development of cochlear hair cells, Rho GTPases are activated by various extracellular signals through membrane receptors to further stimulate multiple downstream effectors. Specifically, RhoA, Cdc42, and Rac1, members of the classical subfamily of the Rho GTPase family, regulate the development and maintenance of cilia by inducing the polymerization of actin monomers and stabilizing actin filaments. In addition, they also regulate the normal morphology orientation of ciliary bundles in auditory hair cells, which is an important element of cell polarity regulation. Moreover, the actin-related pathways mediated by RhoA, Cdc42, and Rac1 also play a role in the motility of outer hair cells, indicating that the function of Rho GTPases is crucial in the highly polar auditory sensory system. In this review, we focus on the expression of RhoA, Cdc42, and Rac1 in cochlear hair cells and how these small molecules participate in ciliary bundle morphogenesis and cochlear hair cell movement. We also discuss the progress of current research investigating the use of these small molecules as drug targets for deafness treatment. |
---|