Cargando…
An unbiased, automated platform for scoring dopaminergic neurodegeneration in C. elegans
Caenorhabditis elegans (C. elegans) has served as a simple model organism to study dopaminergic neurodegeneration, as it enables quantitative analysis of cellular and sub-cellular morphologies in live animals. These isogenic nematodes have a rapid life cycle and transparent body, making high-through...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328331/ https://www.ncbi.nlm.nih.gov/pubmed/37418455 http://dx.doi.org/10.1371/journal.pone.0281797 |
_version_ | 1785069774443642880 |
---|---|
author | Clark, Andrew S. Kalmanson, Zachary Morton, Katherine Hartman, Jessica Meyer, Joel San-Miguel, Adriana |
author_facet | Clark, Andrew S. Kalmanson, Zachary Morton, Katherine Hartman, Jessica Meyer, Joel San-Miguel, Adriana |
author_sort | Clark, Andrew S. |
collection | PubMed |
description | Caenorhabditis elegans (C. elegans) has served as a simple model organism to study dopaminergic neurodegeneration, as it enables quantitative analysis of cellular and sub-cellular morphologies in live animals. These isogenic nematodes have a rapid life cycle and transparent body, making high-throughput imaging and evaluation of fluorescently tagged neurons possible. However, the current state-of-the-art method for quantifying dopaminergic degeneration requires researchers to manually examine images and score dendrites into groups of varying levels of neurodegeneration severity, which is time consuming, subject to bias, and limited in data sensitivity. We aim to overcome the pitfalls of manual neuron scoring by developing an automated, unbiased image processing algorithm to quantify dopaminergic neurodegeneration in C. elegans. The algorithm can be used on images acquired with different microscopy setups and only requires two inputs: a maximum projection image of the four cephalic neurons in the C. elegans head and the pixel size of the user’s camera. We validate the platform by detecting and quantifying neurodegeneration in nematodes exposed to rotenone, cold shock, and 6-hydroxydopamine using 63x epifluorescence, 63x confocal, and 40x epifluorescence microscopy, respectively. Analysis of tubby mutant worms with altered fat storage showed that, contrary to our hypothesis, increased adiposity did not sensitize to stressor-induced neurodegeneration. We further verify the accuracy of the algorithm by comparing code-generated, categorical degeneration results with manually scored dendrites of the same experiments. The platform, which detects 20 different metrics of neurodegeneration, can provide comparative insight into how each exposure affects dopaminergic neurodegeneration patterns. |
format | Online Article Text |
id | pubmed-10328331 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-103283312023-07-08 An unbiased, automated platform for scoring dopaminergic neurodegeneration in C. elegans Clark, Andrew S. Kalmanson, Zachary Morton, Katherine Hartman, Jessica Meyer, Joel San-Miguel, Adriana PLoS One Research Article Caenorhabditis elegans (C. elegans) has served as a simple model organism to study dopaminergic neurodegeneration, as it enables quantitative analysis of cellular and sub-cellular morphologies in live animals. These isogenic nematodes have a rapid life cycle and transparent body, making high-throughput imaging and evaluation of fluorescently tagged neurons possible. However, the current state-of-the-art method for quantifying dopaminergic degeneration requires researchers to manually examine images and score dendrites into groups of varying levels of neurodegeneration severity, which is time consuming, subject to bias, and limited in data sensitivity. We aim to overcome the pitfalls of manual neuron scoring by developing an automated, unbiased image processing algorithm to quantify dopaminergic neurodegeneration in C. elegans. The algorithm can be used on images acquired with different microscopy setups and only requires two inputs: a maximum projection image of the four cephalic neurons in the C. elegans head and the pixel size of the user’s camera. We validate the platform by detecting and quantifying neurodegeneration in nematodes exposed to rotenone, cold shock, and 6-hydroxydopamine using 63x epifluorescence, 63x confocal, and 40x epifluorescence microscopy, respectively. Analysis of tubby mutant worms with altered fat storage showed that, contrary to our hypothesis, increased adiposity did not sensitize to stressor-induced neurodegeneration. We further verify the accuracy of the algorithm by comparing code-generated, categorical degeneration results with manually scored dendrites of the same experiments. The platform, which detects 20 different metrics of neurodegeneration, can provide comparative insight into how each exposure affects dopaminergic neurodegeneration patterns. Public Library of Science 2023-07-07 /pmc/articles/PMC10328331/ /pubmed/37418455 http://dx.doi.org/10.1371/journal.pone.0281797 Text en © 2023 Clark et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Clark, Andrew S. Kalmanson, Zachary Morton, Katherine Hartman, Jessica Meyer, Joel San-Miguel, Adriana An unbiased, automated platform for scoring dopaminergic neurodegeneration in C. elegans |
title | An unbiased, automated platform for scoring dopaminergic neurodegeneration in C. elegans |
title_full | An unbiased, automated platform for scoring dopaminergic neurodegeneration in C. elegans |
title_fullStr | An unbiased, automated platform for scoring dopaminergic neurodegeneration in C. elegans |
title_full_unstemmed | An unbiased, automated platform for scoring dopaminergic neurodegeneration in C. elegans |
title_short | An unbiased, automated platform for scoring dopaminergic neurodegeneration in C. elegans |
title_sort | unbiased, automated platform for scoring dopaminergic neurodegeneration in c. elegans |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328331/ https://www.ncbi.nlm.nih.gov/pubmed/37418455 http://dx.doi.org/10.1371/journal.pone.0281797 |
work_keys_str_mv | AT clarkandrews anunbiasedautomatedplatformforscoringdopaminergicneurodegenerationincelegans AT kalmansonzachary anunbiasedautomatedplatformforscoringdopaminergicneurodegenerationincelegans AT mortonkatherine anunbiasedautomatedplatformforscoringdopaminergicneurodegenerationincelegans AT hartmanjessica anunbiasedautomatedplatformforscoringdopaminergicneurodegenerationincelegans AT meyerjoel anunbiasedautomatedplatformforscoringdopaminergicneurodegenerationincelegans AT sanmigueladriana anunbiasedautomatedplatformforscoringdopaminergicneurodegenerationincelegans AT clarkandrews unbiasedautomatedplatformforscoringdopaminergicneurodegenerationincelegans AT kalmansonzachary unbiasedautomatedplatformforscoringdopaminergicneurodegenerationincelegans AT mortonkatherine unbiasedautomatedplatformforscoringdopaminergicneurodegenerationincelegans AT hartmanjessica unbiasedautomatedplatformforscoringdopaminergicneurodegenerationincelegans AT meyerjoel unbiasedautomatedplatformforscoringdopaminergicneurodegenerationincelegans AT sanmigueladriana unbiasedautomatedplatformforscoringdopaminergicneurodegenerationincelegans |