Cargando…

The influences of surface effect and elastic strain energy on structure and mechanical properties of dislocations in several diamond- and sphalerite-structured materials

The fundamental properties of dislocations in diamond-structured Si and sphalerite-structured GaAs, InP and CdTe are investigated based on lattice theory of dislocation, hoping to provide some theoretical references in improving the properties of related materials. The influences of the surface effe...

Descripción completa

Detalles Bibliográficos
Autor principal: Zhang, Huili
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328352/
https://www.ncbi.nlm.nih.gov/pubmed/37418485
http://dx.doi.org/10.1371/journal.pone.0288331
Descripción
Sumario:The fundamental properties of dislocations in diamond-structured Si and sphalerite-structured GaAs, InP and CdTe are investigated based on lattice theory of dislocation, hoping to provide some theoretical references in improving the properties of related materials. The influences of the surface effect(SE) and elastic strain energy on the structure and mechanical property of dislocation are discussed systematically. After considering the SE, the core width of dislocation becomes wider due to the elastic interaction between atoms becomes stronger. Compared to glide partial dislocation, the correction of SE to shuffle dislocation is more obvious. Both the SE and the elastic strain energy affect the energy barrier and Peierls stress of dislocation. The influence of SE on energy barrier and Peierls stress mainly results from the misfit energy and elastic strain energy become lower when the core of dislocation becomes wider. While the influence of elastic strain energy on energy barrier and Peierls stress mainly results from the cancellation between misfit energy and elastic strain energy for they possess comparable amplitudes but opposite phases. In addition, it is deduced that for the studied crystals, the shuffle dislocations control the deformation at medium and low temperatures, while glide partial dislocations are responsible for high temperature plasticity.