Cargando…
A Deep Generative Model with Multiscale Features Enabled Industrial Internet of Things for Intelligent Fault Diagnosis of Bearings
Effective condition monitoring and fault diagnosis of bearings can not only maximize the life of rolling bearings and prevent unexpected shutdowns caused by equipment failures but also eliminate unnecessary costs and waste caused by excessive maintenance. However, the existing deep-learning-based be...
Autores principales: | Hu, He-xuan, Cai, Yicheng, Hu, Qiang, Zhang, Ye |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328390/ https://www.ncbi.nlm.nih.gov/pubmed/37426474 http://dx.doi.org/10.34133/research.0176 |
Ejemplares similares
-
Fault Detection on the Edge and Adaptive Communication for State of Alert in Industrial Internet of Things
por: Santo, Yuri, et al.
Publicado: (2023) -
Security and fault tolerance in Internet of Things
por: Chakraborty, Rajat Subhra, et al.
Publicado: (2019) -
Sustainable Smart Industry: A Secure and Energy Efficient Consensus Mechanism for Artificial Intelligence Enabled Industrial Internet of Things
por: Sasikumar, A., et al.
Publicado: (2022) -
Fault Diagnosis for Rolling Element Bearings Based on Feature Space Reconstruction and Multiscale Permutation Entropy
por: Zhang, Weibo, et al.
Publicado: (2019) -
A Deep Neural Network-Based Feature Fusion for Bearing Fault Diagnosis
por: Hoang, Duy Tang, et al.
Publicado: (2021)