Cargando…
Deep multi-omics integration by learning correlation-maximizing representation identifies prognostically stratified cancer subtypes
MOTIVATION: Molecular subtyping by integrative modeling of multi-omics and clinical data can help the identification of robust and clinically actionable disease subgroups; an essential step in developing precision medicine approaches. RESULTS: We developed a novel outcome-guided molecular subgroupin...
Autores principales: | Ji, Yanrong, Dutta, Pratik, Davuluri, Ramana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328436/ https://www.ncbi.nlm.nih.gov/pubmed/37424943 http://dx.doi.org/10.1093/bioadv/vbad075 |
Ejemplares similares
-
Multi-omics analysis identifies osteosarcoma subtypes with distinct prognosis indicating stratified treatment
por: Jiang, Yafei, et al.
Publicado: (2022) -
Integrated Multi-Omic Analysis Reveals Immunosuppressive Phenotype Associated with Poor Outcomes in High-Grade Serous Ovarian Cancer
por: Keathley, Russell, et al.
Publicado: (2023) -
Evaluation of data discretization methods to derive platform independent isoform expression signatures for multi-class tumor subtyping
por: Jung, Segun, et al.
Publicado: (2015) -
Platform-Independent Classification System to Predict Molecular Subtypes of High-Grade Serous Ovarian Carcinoma
por: Shilpi, Arunima, et al.
Publicado: (2019) -
Recursive integration of synergised graph representations of multi-omics data for cancer subtypes identification
por: Madhumita, et al.
Publicado: (2022)