Cargando…

Vitamin B2 enables regulation of fasting glucose availability

Flavin adenine dinucleotide (FAD) interacts with flavoproteins to mediate oxidation-reduction reactions required for cellular energy demands. Not surprisingly, mutations that alter FAD binding to flavoproteins cause rare inborn errors of metabolism (IEMs) that disrupt liver function and render fasti...

Descripción completa

Detalles Bibliográficos
Autores principales: Masschelin, Peter M, Saha, Pradip, Ochsner, Scott A, Cox, Aaron R, Kim, Kang Ho, Felix, Jessica B, Sharp, Robert, Li, Xin, Tan, Lin, Park, Jun Hyoung, Wang, Liping, Putluri, Vasanta, Lorenzi, Philip L, Nuotio-Antar, Alli M, Sun, Zheng, Kaipparettu, Benny Abraham, Putluri, Nagireddy, Moore, David D, Summers, Scott A, McKenna, Neil J, Hartig, Sean M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328530/
https://www.ncbi.nlm.nih.gov/pubmed/37417957
http://dx.doi.org/10.7554/eLife.84077
_version_ 1785069818666287104
author Masschelin, Peter M
Saha, Pradip
Ochsner, Scott A
Cox, Aaron R
Kim, Kang Ho
Felix, Jessica B
Sharp, Robert
Li, Xin
Tan, Lin
Park, Jun Hyoung
Wang, Liping
Putluri, Vasanta
Lorenzi, Philip L
Nuotio-Antar, Alli M
Sun, Zheng
Kaipparettu, Benny Abraham
Putluri, Nagireddy
Moore, David D
Summers, Scott A
McKenna, Neil J
Hartig, Sean M
author_facet Masschelin, Peter M
Saha, Pradip
Ochsner, Scott A
Cox, Aaron R
Kim, Kang Ho
Felix, Jessica B
Sharp, Robert
Li, Xin
Tan, Lin
Park, Jun Hyoung
Wang, Liping
Putluri, Vasanta
Lorenzi, Philip L
Nuotio-Antar, Alli M
Sun, Zheng
Kaipparettu, Benny Abraham
Putluri, Nagireddy
Moore, David D
Summers, Scott A
McKenna, Neil J
Hartig, Sean M
author_sort Masschelin, Peter M
collection PubMed
description Flavin adenine dinucleotide (FAD) interacts with flavoproteins to mediate oxidation-reduction reactions required for cellular energy demands. Not surprisingly, mutations that alter FAD binding to flavoproteins cause rare inborn errors of metabolism (IEMs) that disrupt liver function and render fasting intolerance, hepatic steatosis, and lipodystrophy. In our study, depleting FAD pools in mice with a vitamin B2-deficient diet (B2D) caused phenotypes associated with organic acidemias and other IEMs, including reduced body weight, hypoglycemia, and fatty liver disease. Integrated discovery approaches revealed B2D tempered fasting activation of target genes for the nuclear receptor PPARα, including those required for gluconeogenesis. We also found PPARα knockdown in the liver recapitulated B2D effects on glucose excursion and fatty liver disease in mice. Finally, treatment with the PPARα agonist fenofibrate activated the integrated stress response and refilled amino acid substrates to rescue fasting glucose availability and overcome B2D phenotypes. These findings identify metabolic responses to FAD availability and nominate strategies for the management of organic acidemias and other rare IEMs.
format Online
Article
Text
id pubmed-10328530
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-103285302023-07-08 Vitamin B2 enables regulation of fasting glucose availability Masschelin, Peter M Saha, Pradip Ochsner, Scott A Cox, Aaron R Kim, Kang Ho Felix, Jessica B Sharp, Robert Li, Xin Tan, Lin Park, Jun Hyoung Wang, Liping Putluri, Vasanta Lorenzi, Philip L Nuotio-Antar, Alli M Sun, Zheng Kaipparettu, Benny Abraham Putluri, Nagireddy Moore, David D Summers, Scott A McKenna, Neil J Hartig, Sean M eLife Cell Biology Flavin adenine dinucleotide (FAD) interacts with flavoproteins to mediate oxidation-reduction reactions required for cellular energy demands. Not surprisingly, mutations that alter FAD binding to flavoproteins cause rare inborn errors of metabolism (IEMs) that disrupt liver function and render fasting intolerance, hepatic steatosis, and lipodystrophy. In our study, depleting FAD pools in mice with a vitamin B2-deficient diet (B2D) caused phenotypes associated with organic acidemias and other IEMs, including reduced body weight, hypoglycemia, and fatty liver disease. Integrated discovery approaches revealed B2D tempered fasting activation of target genes for the nuclear receptor PPARα, including those required for gluconeogenesis. We also found PPARα knockdown in the liver recapitulated B2D effects on glucose excursion and fatty liver disease in mice. Finally, treatment with the PPARα agonist fenofibrate activated the integrated stress response and refilled amino acid substrates to rescue fasting glucose availability and overcome B2D phenotypes. These findings identify metabolic responses to FAD availability and nominate strategies for the management of organic acidemias and other rare IEMs. eLife Sciences Publications, Ltd 2023-07-07 /pmc/articles/PMC10328530/ /pubmed/37417957 http://dx.doi.org/10.7554/eLife.84077 Text en © 2023, Masschelin et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Cell Biology
Masschelin, Peter M
Saha, Pradip
Ochsner, Scott A
Cox, Aaron R
Kim, Kang Ho
Felix, Jessica B
Sharp, Robert
Li, Xin
Tan, Lin
Park, Jun Hyoung
Wang, Liping
Putluri, Vasanta
Lorenzi, Philip L
Nuotio-Antar, Alli M
Sun, Zheng
Kaipparettu, Benny Abraham
Putluri, Nagireddy
Moore, David D
Summers, Scott A
McKenna, Neil J
Hartig, Sean M
Vitamin B2 enables regulation of fasting glucose availability
title Vitamin B2 enables regulation of fasting glucose availability
title_full Vitamin B2 enables regulation of fasting glucose availability
title_fullStr Vitamin B2 enables regulation of fasting glucose availability
title_full_unstemmed Vitamin B2 enables regulation of fasting glucose availability
title_short Vitamin B2 enables regulation of fasting glucose availability
title_sort vitamin b2 enables regulation of fasting glucose availability
topic Cell Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328530/
https://www.ncbi.nlm.nih.gov/pubmed/37417957
http://dx.doi.org/10.7554/eLife.84077
work_keys_str_mv AT masschelinpeterm vitaminb2enablesregulationoffastingglucoseavailability
AT sahapradip vitaminb2enablesregulationoffastingglucoseavailability
AT ochsnerscotta vitaminb2enablesregulationoffastingglucoseavailability
AT coxaaronr vitaminb2enablesregulationoffastingglucoseavailability
AT kimkangho vitaminb2enablesregulationoffastingglucoseavailability
AT felixjessicab vitaminb2enablesregulationoffastingglucoseavailability
AT sharprobert vitaminb2enablesregulationoffastingglucoseavailability
AT lixin vitaminb2enablesregulationoffastingglucoseavailability
AT tanlin vitaminb2enablesregulationoffastingglucoseavailability
AT parkjunhyoung vitaminb2enablesregulationoffastingglucoseavailability
AT wangliping vitaminb2enablesregulationoffastingglucoseavailability
AT putlurivasanta vitaminb2enablesregulationoffastingglucoseavailability
AT lorenziphilipl vitaminb2enablesregulationoffastingglucoseavailability
AT nuotioantarallim vitaminb2enablesregulationoffastingglucoseavailability
AT sunzheng vitaminb2enablesregulationoffastingglucoseavailability
AT kaipparettubennyabraham vitaminb2enablesregulationoffastingglucoseavailability
AT putlurinagireddy vitaminb2enablesregulationoffastingglucoseavailability
AT mooredavidd vitaminb2enablesregulationoffastingglucoseavailability
AT summersscotta vitaminb2enablesregulationoffastingglucoseavailability
AT mckennaneilj vitaminb2enablesregulationoffastingglucoseavailability
AT hartigseanm vitaminb2enablesregulationoffastingglucoseavailability