Cargando…
Recurrence prediction in clear cell renal cell carcinoma using machine learning of quantitative nuclear features
The recurrence of non-metastatic renal cell carcinoma (RCC) may occur early or late after surgery. This study aimed to develop a recurrence prediction machine learning model based on quantitative nuclear morphologic features of clear cell RCC (ccRCC). We investigated 131 ccRCC patients who underwent...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328910/ https://www.ncbi.nlm.nih.gov/pubmed/37419897 http://dx.doi.org/10.1038/s41598-023-38097-7 |
Sumario: | The recurrence of non-metastatic renal cell carcinoma (RCC) may occur early or late after surgery. This study aimed to develop a recurrence prediction machine learning model based on quantitative nuclear morphologic features of clear cell RCC (ccRCC). We investigated 131 ccRCC patients who underwent nephrectomy (T1-3N0M0). Forty had recurrence within 5 years and 22 between 5 and 10 years; thirty-seven were recurrence-free during 5–10 years and 32 were for more than 10 years. We extracted nuclear features from regions of interest (ROIs) using a digital pathology technique and used them to train 5- and 10-year Support Vector Machine models for recurrence prediction. The models predicted recurrence at 5/10 years after surgery with accuracies of 86.4%/74.1% for each ROI and 100%/100% for each case, respectively. By combining the two models, the accuracy of the recurrence prediction within 5 years was 100%. However, recurrence between 5 and 10 years was correctly predicted for only 5 of the 12 test cases. The machine learning models showed good accuracy for recurrence prediction within 5 years after surgery and may be useful for the design of follow-up protocols and patient selection for adjuvant therapy. |
---|