Cargando…
Recurrence prediction in clear cell renal cell carcinoma using machine learning of quantitative nuclear features
The recurrence of non-metastatic renal cell carcinoma (RCC) may occur early or late after surgery. This study aimed to develop a recurrence prediction machine learning model based on quantitative nuclear morphologic features of clear cell RCC (ccRCC). We investigated 131 ccRCC patients who underwent...
Autores principales: | Matsubara, Shuya, Saito, Akira, Tokuyama, Naoto, Muraoka, Ryu, Hashimoto, Takeshi, Satake, Naoya, Nagao, Toshitaka, Kuroda, Masahiko, Ohno, Yoshio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328910/ https://www.ncbi.nlm.nih.gov/pubmed/37419897 http://dx.doi.org/10.1038/s41598-023-38097-7 |
Ejemplares similares
-
Prediction of non-muscle invasive bladder cancer recurrence using machine learning of quantitative nuclear features
por: Tokuyama, Naoto, et al.
Publicado: (2021) -
A case of primary clear cell hepatocellular carcinoma comprised mostly of clear cells
por: Kokubo, Reiji, et al.
Publicado: (2019) -
Clinical value of minimum apparent diffusion coefficient for prediction of clinically significant prostate cancer in the transition zone
por: Ono, Ashita, et al.
Publicado: (2023) -
Quantitative nucleic features are effective for discrimination of intraductal proliferative lesions of the breast
por: Yamada, Masatoshi, et al.
Publicado: (2016) -
Distinct effect of body mass index by sex as a prognostic factor in localized renal cell carcinoma treated with nephrectomy ~ data from a multi-institutional study in Japan ~
por: Tsutsumi, Takeshi, et al.
Publicado: (2021)