Cargando…
SCOPE: predicting future diagnoses in office visits using electronic health records
We propose an interpretable and scalable model to predict likely diagnoses at an encounter based on past diagnoses and lab results. This model is intended to aid physicians in their interaction with the electronic health records (EHR). To accomplish this, we retrospectively collected and de-identifi...
Autores principales: | Mukherjee, Pritam, Humbert-Droz, Marie, Chen, Jonathan H., Gevaert, Olivier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328934/ https://www.ncbi.nlm.nih.gov/pubmed/37419945 http://dx.doi.org/10.1038/s41598-023-38257-9 |
Ejemplares similares
-
Strategies to Address the Lack of Labeled Data for Supervised Machine Learning Training With Electronic Health Records: Case Study for the Extraction of Symptoms From Clinical Notes
por: Humbert-Droz, Marie, et al.
Publicado: (2022) -
Structuring clinical text with AI: Old versus new natural language processing techniques evaluated on eight common cardiovascular diseases
por: Zhan, Xianghao, et al.
Publicado: (2021) -
Development and validation of MedDRA Tagger: a tool for extraction and structuring medical information from clinical notes
por: Humbert-Droz, Marie, et al.
Publicado: (2022) -
Topological data analysis of thoracic radiographic images shows improved radiomics-based lung tumor histology prediction
por: Vandaele, Robin, et al.
Publicado: (2022) -
Wearable Health Technology and Electronic Health Record Integration: Scoping Review and Future Directions
por: Dinh-Le, Catherine, et al.
Publicado: (2019)