Cargando…
Quantifying disorder one atom at a time using an interpretable graph neural network paradigm
Quantifying the level of atomic disorder within materials is critical to understanding how evolving local structural environments dictate performance and durability. Here, we leverage graph neural networks to define a physically interpretable metric for local disorder, called SODAS. This metric enco...
Autores principales: | Chapman, James, Hsu, Tim, Chen, Xiao, Heo, Tae Wook, Wood, Brandon C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328988/ https://www.ncbi.nlm.nih.gov/pubmed/37419927 http://dx.doi.org/10.1038/s41467-023-39755-0 |
Ejemplares similares
-
The interpretation of graphs in physics
por: MacPherson, I S, et al.
Publicado: (1974) -
Neural representations of cryo-EM maps and a graph-based interpretation
por: Ranno, Nathan, et al.
Publicado: (2022) -
Graph-based discovery and analysis of atomic-scale one-dimensional materials
por: Li, Shunning, et al.
Publicado: (2022) -
Integrating concept of pharmacophore with graph neural networks for chemical property prediction and interpretation
por: Kong, Yue, et al.
Publicado: (2022) -
Simplified, interpretable graph convolutional neural networks for small molecule activity prediction
por: Weber, Jeffrey K., et al.
Publicado: (2021)