Cargando…
Frozen sound: An ultra-low frequency and ultra-broadband non-reciprocal acoustic absorber
The absorption of airborne sound is still a subject of active research, and even more since the emergence of acoustic metamaterials. Although being subwavelength, the screen barriers developed so far cannot absorb more than 50% of an incident wave at very low frequencies (<100 Hz). Here, we explo...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10329010/ https://www.ncbi.nlm.nih.gov/pubmed/37419913 http://dx.doi.org/10.1038/s41467-023-39727-4 |
Sumario: | The absorption of airborne sound is still a subject of active research, and even more since the emergence of acoustic metamaterials. Although being subwavelength, the screen barriers developed so far cannot absorb more than 50% of an incident wave at very low frequencies (<100 Hz). Here, we explore the design of a subwavelength and broadband absorbing screen based on thermoacoustic energy conversion. The system consists of a porous layer kept at room temperature on one side while the other side is cooled down to a very low temperature using liquid nitrogen. At the absorbing screen, the sound wave experiences both a pressure jump caused by viscous drag, and a velocity jump caused by thermoacoustic energy conversion breaking reciprocity and allowing a one-sided absorption up to 95 % even in the infrasound regime. By overcoming the ordinary low frequency absorption limit, thermoacoustic effects open the door to the design of innovative devices. |
---|