Cargando…
Transformer-based hand gesture recognition from instantaneous to fused neural decomposition of high-density EMG signals
Designing efficient and labor-saving prosthetic hands requires powerful hand gesture recognition algorithms that can achieve high accuracy with limited complexity and latency. In this context, the paper proposes a Compact Transformer-based Hand Gesture Recognition framework referred to as [Formula:...
Autores principales: | Montazerin, Mansooreh, Rahimian, Elahe, Naderkhani, Farnoosh, Atashzar, S. Farokh, Yanushkevich, Svetlana, Mohammadi, Arash |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10329032/ https://www.ncbi.nlm.nih.gov/pubmed/37419881 http://dx.doi.org/10.1038/s41598-023-36490-w |
Ejemplares similares
-
Gesture recognition by instantaneous surface EMG images
por: Geng, Weidong, et al.
Publicado: (2016) -
Surface EMG-Based Instantaneous Hand Gesture Recognition Using Convolutional Neural Network with the Transfer Learning Method
por: Yu, Zhipeng, et al.
Publicado: (2021) -
A Novel EMG-Based Hand Gesture Recognition Framework Based on Multivariate Variational Mode Decomposition
por: Yang, Kun, et al.
Publicado: (2021) -
putEMG—A Surface Electromyography Hand Gesture Recognition Dataset
por: Kaczmarek, Piotr, et al.
Publicado: (2019) -
Performance Evaluation of Convolutional Neural Network for Hand Gesture Recognition Using EMG
por: Asif, Ali Raza, et al.
Publicado: (2020)