Cargando…
Radiograph-comparable image synthesis for spine alignment analysis using deep learning with prospective clinical validation
BACKGROUND: Adolescent idiopathic scoliosis (AIS) is the most common type of spinal disorder affecting children. Clinical screening and diagnosis require physical and radiographic examinations, which are either subjective or increase radiation exposure. We therefore developed and validated a radiati...
Autores principales: | Meng, Nan, Wong, Kwan-Yee K., Zhao, Moxin, Cheung, Jason P.Y., Zhang, Teng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10329130/ https://www.ncbi.nlm.nih.gov/pubmed/37425371 http://dx.doi.org/10.1016/j.eclinm.2023.102050 |
Ejemplares similares
-
An artificial intelligence powered platform for auto-analyses of spine alignment irrespective of image quality with prospective validation
por: Meng, Nan, et al.
Publicado: (2022) -
SpineHRformer: A Transformer-Based Deep Learning Model for Automatic Spine Deformity Assessment with Prospective Validation
por: Zhao, Moxin, et al.
Publicado: (2023) -
Deep learning approach for automatic landmark detection and alignment analysis in whole-spine lateral radiographs
por: Yeh, Yu-Cheng, et al.
Publicado: (2021) -
The effect of breast cancer surgery on spine alignment: Whole-spine radiograph analysis
por: Nam, Kyung Eun, et al.
Publicado: (2022) -
Correlation of cervical sagittal alignment parameters on full-length spine radiographs compared with dedicated cervical radiographs
por: Carreon, Leah Y., et al.
Publicado: (2016)