Cargando…
RespectM revealed metabolic heterogeneity powers deep learning for reshaping the DBTL cycle
Synthetic biology, relying on Design-Build-Test-Learn (DBTL) cycle, aims to solve medicine, manufacturing, and agriculture problems. However, the DBTL cycle’s Learn (L) step lacks predictive power for the behavior of biological systems, resulting from the incompatibility between sparse testing data...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10329182/ https://www.ncbi.nlm.nih.gov/pubmed/37426353 http://dx.doi.org/10.1016/j.isci.2023.107069 |
_version_ | 1785069967015673856 |
---|---|
author | Meng, Xuanlin Xu, Ping Tao, Fei |
author_facet | Meng, Xuanlin Xu, Ping Tao, Fei |
author_sort | Meng, Xuanlin |
collection | PubMed |
description | Synthetic biology, relying on Design-Build-Test-Learn (DBTL) cycle, aims to solve medicine, manufacturing, and agriculture problems. However, the DBTL cycle’s Learn (L) step lacks predictive power for the behavior of biological systems, resulting from the incompatibility between sparse testing data and chaotic metabolic networks. Herein, we develop a method, “RespectM,” based on mass spectrometry imaging, which is able to detect metabolites at a rate of 500 cells per hour with high efficiency. In this study, 4,321 single cell level metabolomics data were acquired, representing metabolic heterogeneity. An optimizable deep neural network was applied to learn from metabolic heterogeneity and a “heterogeneity-powered learning (HPL)” based model was trained as well. By testing the HPL based model, we suggest minimal operations to achieve high triglyceride production for engineering. The HPL strategy could revolutionize rational design and reshape the DBTL cycle. |
format | Online Article Text |
id | pubmed-10329182 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-103291822023-07-09 RespectM revealed metabolic heterogeneity powers deep learning for reshaping the DBTL cycle Meng, Xuanlin Xu, Ping Tao, Fei iScience Article Synthetic biology, relying on Design-Build-Test-Learn (DBTL) cycle, aims to solve medicine, manufacturing, and agriculture problems. However, the DBTL cycle’s Learn (L) step lacks predictive power for the behavior of biological systems, resulting from the incompatibility between sparse testing data and chaotic metabolic networks. Herein, we develop a method, “RespectM,” based on mass spectrometry imaging, which is able to detect metabolites at a rate of 500 cells per hour with high efficiency. In this study, 4,321 single cell level metabolomics data were acquired, representing metabolic heterogeneity. An optimizable deep neural network was applied to learn from metabolic heterogeneity and a “heterogeneity-powered learning (HPL)” based model was trained as well. By testing the HPL based model, we suggest minimal operations to achieve high triglyceride production for engineering. The HPL strategy could revolutionize rational design and reshape the DBTL cycle. Elsevier 2023-06-08 /pmc/articles/PMC10329182/ /pubmed/37426353 http://dx.doi.org/10.1016/j.isci.2023.107069 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Meng, Xuanlin Xu, Ping Tao, Fei RespectM revealed metabolic heterogeneity powers deep learning for reshaping the DBTL cycle |
title | RespectM revealed metabolic heterogeneity powers deep learning for reshaping the DBTL cycle |
title_full | RespectM revealed metabolic heterogeneity powers deep learning for reshaping the DBTL cycle |
title_fullStr | RespectM revealed metabolic heterogeneity powers deep learning for reshaping the DBTL cycle |
title_full_unstemmed | RespectM revealed metabolic heterogeneity powers deep learning for reshaping the DBTL cycle |
title_short | RespectM revealed metabolic heterogeneity powers deep learning for reshaping the DBTL cycle |
title_sort | respectm revealed metabolic heterogeneity powers deep learning for reshaping the dbtl cycle |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10329182/ https://www.ncbi.nlm.nih.gov/pubmed/37426353 http://dx.doi.org/10.1016/j.isci.2023.107069 |
work_keys_str_mv | AT mengxuanlin respectmrevealedmetabolicheterogeneitypowersdeeplearningforreshapingthedbtlcycle AT xuping respectmrevealedmetabolicheterogeneitypowersdeeplearningforreshapingthedbtlcycle AT taofei respectmrevealedmetabolicheterogeneitypowersdeeplearningforreshapingthedbtlcycle |