Cargando…
RespectM revealed metabolic heterogeneity powers deep learning for reshaping the DBTL cycle
Synthetic biology, relying on Design-Build-Test-Learn (DBTL) cycle, aims to solve medicine, manufacturing, and agriculture problems. However, the DBTL cycle’s Learn (L) step lacks predictive power for the behavior of biological systems, resulting from the incompatibility between sparse testing data...
Autores principales: | Meng, Xuanlin, Xu, Ping, Tao, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10329182/ https://www.ncbi.nlm.nih.gov/pubmed/37426353 http://dx.doi.org/10.1016/j.isci.2023.107069 |
Ejemplares similares
-
Robustness and reproducibility of simple and complex synthetic logic circuit designs using a DBTL loop
por: Cummins, Breschine, et al.
Publicado: (2023) -
Deep generative molecular design reshapes drug discovery
por: Zeng, Xiangxiang, et al.
Publicado: (2022) -
Tumor heterogeneity reshapes the tumor microenvironment to influence drug resistance
por: Zhang, Aiping, et al.
Publicado: (2022) -
Metabolomic Analysis Reveals Domestication-Driven Reshaping of Polyphenolic Antioxidants in Soybean Seeds
por: Li, Xuetong, et al.
Publicado: (2023) -
Transcriptome analysis reveals high tumor heterogeneity with respect to re-activation of stemness and proliferation programs
por: Baranovsky, Artem, et al.
Publicado: (2022)