Cargando…

Harmonized multi‐metric and multi‐centric assessment of EEG source space connectivity for dementia characterization

INTRODUCTION: Harmonization protocols that address batch effects and cross‐site methodological differences in multi‐center studies are critical for strengthening electroencephalography (EEG) signatures of functional connectivity (FC) as potential dementia biomarkers. METHODS: We implemented an autom...

Descripción completa

Detalles Bibliográficos
Autores principales: Prado, Pavel, Mejía, Jhony A., Sainz‐Ballesteros, Agustín, Birba, Agustina, Moguilner, Sebastian, Herzog, Rubén, Otero, Mónica, Cuadros, Jhosmary, Z‐Rivera, Lucía, O'Byrne, Daniel Franco, Parra, Mario, Ibáñez, Agustín
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10329259/
https://www.ncbi.nlm.nih.gov/pubmed/37424962
http://dx.doi.org/10.1002/dad2.12455
Descripción
Sumario:INTRODUCTION: Harmonization protocols that address batch effects and cross‐site methodological differences in multi‐center studies are critical for strengthening electroencephalography (EEG) signatures of functional connectivity (FC) as potential dementia biomarkers. METHODS: We implemented an automatic processing pipeline incorporating electrode layout integrations, patient–control normalizations, and multi‐metric EEG source space connectomics analyses. RESULTS: Spline interpolations of EEG signals onto a head mesh model with 6067 virtual electrodes resulted in an effective method for integrating electrode layouts. Z‐score transformations of EEG time series resulted in source space connectivity matrices with high bilateral symmetry, reinforced long‐range connections, and diminished short‐range functional interactions. A composite FC metric allowed for accurate multicentric classifications of Alzheimer's disease and behavioral variant frontotemporal dementia. DISCUSSION: Harmonized multi‐metric analysis of EEG source space connectivity can address data heterogeneities in multi‐centric studies, representing a powerful tool for accurately characterizing dementia.