Cargando…

Harmonized multi‐metric and multi‐centric assessment of EEG source space connectivity for dementia characterization

INTRODUCTION: Harmonization protocols that address batch effects and cross‐site methodological differences in multi‐center studies are critical for strengthening electroencephalography (EEG) signatures of functional connectivity (FC) as potential dementia biomarkers. METHODS: We implemented an autom...

Descripción completa

Detalles Bibliográficos
Autores principales: Prado, Pavel, Mejía, Jhony A., Sainz‐Ballesteros, Agustín, Birba, Agustina, Moguilner, Sebastian, Herzog, Rubén, Otero, Mónica, Cuadros, Jhosmary, Z‐Rivera, Lucía, O'Byrne, Daniel Franco, Parra, Mario, Ibáñez, Agustín
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10329259/
https://www.ncbi.nlm.nih.gov/pubmed/37424962
http://dx.doi.org/10.1002/dad2.12455
_version_ 1785069979119386624
author Prado, Pavel
Mejía, Jhony A.
Sainz‐Ballesteros, Agustín
Birba, Agustina
Moguilner, Sebastian
Herzog, Rubén
Otero, Mónica
Cuadros, Jhosmary
Z‐Rivera, Lucía
O'Byrne, Daniel Franco
Parra, Mario
Ibáñez, Agustín
author_facet Prado, Pavel
Mejía, Jhony A.
Sainz‐Ballesteros, Agustín
Birba, Agustina
Moguilner, Sebastian
Herzog, Rubén
Otero, Mónica
Cuadros, Jhosmary
Z‐Rivera, Lucía
O'Byrne, Daniel Franco
Parra, Mario
Ibáñez, Agustín
author_sort Prado, Pavel
collection PubMed
description INTRODUCTION: Harmonization protocols that address batch effects and cross‐site methodological differences in multi‐center studies are critical for strengthening electroencephalography (EEG) signatures of functional connectivity (FC) as potential dementia biomarkers. METHODS: We implemented an automatic processing pipeline incorporating electrode layout integrations, patient–control normalizations, and multi‐metric EEG source space connectomics analyses. RESULTS: Spline interpolations of EEG signals onto a head mesh model with 6067 virtual electrodes resulted in an effective method for integrating electrode layouts. Z‐score transformations of EEG time series resulted in source space connectivity matrices with high bilateral symmetry, reinforced long‐range connections, and diminished short‐range functional interactions. A composite FC metric allowed for accurate multicentric classifications of Alzheimer's disease and behavioral variant frontotemporal dementia. DISCUSSION: Harmonized multi‐metric analysis of EEG source space connectivity can address data heterogeneities in multi‐centric studies, representing a powerful tool for accurately characterizing dementia.
format Online
Article
Text
id pubmed-10329259
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-103292592023-07-09 Harmonized multi‐metric and multi‐centric assessment of EEG source space connectivity for dementia characterization Prado, Pavel Mejía, Jhony A. Sainz‐Ballesteros, Agustín Birba, Agustina Moguilner, Sebastian Herzog, Rubén Otero, Mónica Cuadros, Jhosmary Z‐Rivera, Lucía O'Byrne, Daniel Franco Parra, Mario Ibáñez, Agustín Alzheimers Dement (Amst) Research Articles INTRODUCTION: Harmonization protocols that address batch effects and cross‐site methodological differences in multi‐center studies are critical for strengthening electroencephalography (EEG) signatures of functional connectivity (FC) as potential dementia biomarkers. METHODS: We implemented an automatic processing pipeline incorporating electrode layout integrations, patient–control normalizations, and multi‐metric EEG source space connectomics analyses. RESULTS: Spline interpolations of EEG signals onto a head mesh model with 6067 virtual electrodes resulted in an effective method for integrating electrode layouts. Z‐score transformations of EEG time series resulted in source space connectivity matrices with high bilateral symmetry, reinforced long‐range connections, and diminished short‐range functional interactions. A composite FC metric allowed for accurate multicentric classifications of Alzheimer's disease and behavioral variant frontotemporal dementia. DISCUSSION: Harmonized multi‐metric analysis of EEG source space connectivity can address data heterogeneities in multi‐centric studies, representing a powerful tool for accurately characterizing dementia. John Wiley and Sons Inc. 2023-07-08 /pmc/articles/PMC10329259/ /pubmed/37424962 http://dx.doi.org/10.1002/dad2.12455 Text en © 2023 The Authors. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring published by Wiley Periodicals, LLC on behalf of Alzheimer's Association. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Research Articles
Prado, Pavel
Mejía, Jhony A.
Sainz‐Ballesteros, Agustín
Birba, Agustina
Moguilner, Sebastian
Herzog, Rubén
Otero, Mónica
Cuadros, Jhosmary
Z‐Rivera, Lucía
O'Byrne, Daniel Franco
Parra, Mario
Ibáñez, Agustín
Harmonized multi‐metric and multi‐centric assessment of EEG source space connectivity for dementia characterization
title Harmonized multi‐metric and multi‐centric assessment of EEG source space connectivity for dementia characterization
title_full Harmonized multi‐metric and multi‐centric assessment of EEG source space connectivity for dementia characterization
title_fullStr Harmonized multi‐metric and multi‐centric assessment of EEG source space connectivity for dementia characterization
title_full_unstemmed Harmonized multi‐metric and multi‐centric assessment of EEG source space connectivity for dementia characterization
title_short Harmonized multi‐metric and multi‐centric assessment of EEG source space connectivity for dementia characterization
title_sort harmonized multi‐metric and multi‐centric assessment of eeg source space connectivity for dementia characterization
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10329259/
https://www.ncbi.nlm.nih.gov/pubmed/37424962
http://dx.doi.org/10.1002/dad2.12455
work_keys_str_mv AT pradopavel harmonizedmultimetricandmulticentricassessmentofeegsourcespaceconnectivityfordementiacharacterization
AT mejiajhonya harmonizedmultimetricandmulticentricassessmentofeegsourcespaceconnectivityfordementiacharacterization
AT sainzballesterosagustin harmonizedmultimetricandmulticentricassessmentofeegsourcespaceconnectivityfordementiacharacterization
AT birbaagustina harmonizedmultimetricandmulticentricassessmentofeegsourcespaceconnectivityfordementiacharacterization
AT moguilnersebastian harmonizedmultimetricandmulticentricassessmentofeegsourcespaceconnectivityfordementiacharacterization
AT herzogruben harmonizedmultimetricandmulticentricassessmentofeegsourcespaceconnectivityfordementiacharacterization
AT oteromonica harmonizedmultimetricandmulticentricassessmentofeegsourcespaceconnectivityfordementiacharacterization
AT cuadrosjhosmary harmonizedmultimetricandmulticentricassessmentofeegsourcespaceconnectivityfordementiacharacterization
AT zriveralucia harmonizedmultimetricandmulticentricassessmentofeegsourcespaceconnectivityfordementiacharacterization
AT obyrnedanielfranco harmonizedmultimetricandmulticentricassessmentofeegsourcespaceconnectivityfordementiacharacterization
AT parramario harmonizedmultimetricandmulticentricassessmentofeegsourcespaceconnectivityfordementiacharacterization
AT ibanezagustin harmonizedmultimetricandmulticentricassessmentofeegsourcespaceconnectivityfordementiacharacterization