Cargando…
Robust joint clustering of multi-omics single-cell data via multi-modal high-order neighborhood Laplacian matrix optimization
MOTIVATION: Simultaneous profiling of multi-omics single-cell data represents exciting technological advancements for understanding cellular states and heterogeneity. Cellular indexing of transcriptomes and epitopes by sequencing allowed for parallel quantification of cell-surface protein expression...
Autores principales: | Jiang, Hao, Zhan, Senwen, Ching, Wai-Ki, Chen, Luonan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10329495/ https://www.ncbi.nlm.nih.gov/pubmed/37382572 http://dx.doi.org/10.1093/bioinformatics/btad414 |
Ejemplares similares
-
Correction to: Robust joint clustering of multi-omics single-cell data via multi-modal high-order neighborhood Laplacian matrix optimization
Publicado: (2023) -
The Laplacian of the potential and the order of energy levels
por: Baumgartner, B, et al.
Publicado: (1984) -
Graph Laplacian-based spectral multi-fidelity modeling
por: Pinti, Orazio, et al.
Publicado: (2023) -
Editorial: Multi-modality imaging and multi-omics approach to pediatric neurogenetic disorders
por: Dong, Xinran
Publicado: (2023) -
Graph Convolutional Network Using Adaptive Neighborhood Laplacian Matrix for Hyperspectral Images with Application to Rice Seed Image Classification
por: Orozco, Jairo, et al.
Publicado: (2023)