Cargando…

Apoptotic effects of human amniotic fluid mesenchymal stem cells conditioned medium on human MCF-7 breast cancer cell line

[Image: see text] INTRODUCTION: Breast cancer, as the most common malignancy among women, is shown to have a high mortality rate and resistance to chemotherapy. Research has shown the possible inhibitory role of Mesenchymal stem cells in curing cancer. Thus, the present work used human amniotic flui...

Descripción completa

Detalles Bibliográficos
Autores principales: Pashaei-Asl, Roghiyeh, Pashaiasl, Maryam, Ebrahimie, Esmaeil, Lale Ataei, Maryam, Paknejad, Maliheh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Tabriz University of Medical Sciences (TUOMS Publishing Group) 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10329748/
https://www.ncbi.nlm.nih.gov/pubmed/37431479
http://dx.doi.org/10.34172/bi.2022.23813
Descripción
Sumario:[Image: see text] INTRODUCTION: Breast cancer, as the most common malignancy among women, is shown to have a high mortality rate and resistance to chemotherapy. Research has shown the possible inhibitory role of Mesenchymal stem cells in curing cancer. Thus, the present work used human amniotic fluid mesenchymal stem cell-conditioned medium (hAFMSCs-CM) as an apoptotic reagent on the human MCF-7 breast cancer cell line. METHODS: Conditioned medium (CM) was prepared from hAFMSCs. After treating MCF-7 cells with CM, a number of analytical procedures (MTT, real-time PCR, western blot, and flow cytometry) were recruited to evaluate the cell viability, Bax and Bcl-2 gene expression, P53 protein expression, and apoptosis, respectively. Human fibroblast cells (Hu02) were used as the negative control. In addition, an integrated approach to meta-analysis was performed. RESULTS: The MCF-7 cells’ viability was decreased significantly after 24 hours (P < 0.0001) and 72 hours (P < 0.05) of treatment. Compared with the control cells, Bax gene’s mRNA expression increased and Bcl-2’s mRNA expression decreased considerably after treating for 24 hours with 80% hAFMSCs-CM (P = 0.0012, P < 0.0001, respectively); an increasing pattern in P53 protein expression could also be observed. The flow cytometry analysis indicated apoptosis. Results from literature mining and the integrated meta-analysis showed that hAFMSCs-CM is able to activate a molecular network where Bcl2 downregulation stands in harmony with the upregulation of P53, EIF5A, DDB2, and Bax, leading to the activation of apoptosis. CONCLUSION: Our finding demonstrated that hAFMSCs-CM presents apoptotic effect on MCF-7 cells; therefore, the application of hAFMSCs-CM, as a therapeutic reagent, can suppress breast cancer cells’ viabilities and induce apoptosis.