Cargando…
Is automatic cephalometric software using artificial intelligence better than orthodontist experts in landmark identification?
BACKGROUND: To evaluate the techniques used for the automatic digitization of cephalograms using artificial intelligence algorithms, highlighting the strengths and weaknesses of each one and reviewing the percentage of success in localizing each cephalometric point. METHODS: Lateral cephalograms wer...
Autores principales: | Ye, Huayu, Cheng, Zixuan, Ungvijanpunya, Nicha, Chen, Wenjing, Cao, Li, Gou, Yongchao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10329795/ https://www.ncbi.nlm.nih.gov/pubmed/37422630 http://dx.doi.org/10.1186/s12903-023-03188-4 |
Ejemplares similares
-
Cephalometric landmark variability among orthodontists and dentomaxillofacial radiologists: a comparative study
por: Durão, Ana Paula Reis, et al.
Publicado: (2015) -
Clear aligner vs fixed self-ligating appliances: Orthodontic emergency during the 2020 coronavirus disease 2019 pandemic
por: Gou, Yongchao, et al.
Publicado: (2022) -
A fully deep learning model for the automatic identification of cephalometric landmarks
por: Kim, Young Hyun, et al.
Publicado: (2021) -
Automatic recognition of cephalometric landmarks via multi-scale sampling strategy
por: Zhao, Congyi, et al.
Publicado: (2023) -
Effectiveness of Human–Artificial Intelligence Collaboration in Cephalometric Landmark Detection
por: Le, Van Nhat Thang, et al.
Publicado: (2022)