Cargando…
Dual consistent pseudo label generation for multi-source domain adaptation without source data for medical image segmentation
INTRODUCTION: Unsupervised domain adaptation (UDA) aims to adapt a model learned from the source domain to the target domain. Thus, the model can obtain transferable knowledge even in target domain that does not have ground truth in this way. In medical image segmentation scenarios, there exist dive...
Autores principales: | Cai, Binke, Ma, Liyan, Sun, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10330808/ https://www.ncbi.nlm.nih.gov/pubmed/37434767 http://dx.doi.org/10.3389/fnins.2023.1209132 |
Ejemplares similares
-
Adaptive Contrastive Learning with Label Consistency for Source Data Free Unsupervised Domain Adaptation
por: Zhao, Xuejun, et al.
Publicado: (2022) -
Polyp segmentation with consistency training and continuous update of pseudo-label
por: Park, Hyun-Cheol, et al.
Publicado: (2022) -
Unsupervised multi-source domain adaptation with no observable source data
por: Jeon, Hyunsik, et al.
Publicado: (2021) -
Multi-EPL: Accurate multi-source domain adaptation
por: Lee, Seongmin, et al.
Publicado: (2021) -
Dual adversarial models with cross-coordination consistency constraint for domain adaption in brain tumor segmentation
por: Qin, Chuanbo, et al.
Publicado: (2023)