Cargando…
Self-supervised pretraining improves the performance of classification of task functional magnetic resonance imaging
INTRODUCTION: Decoding brain activities is one of the most popular topics in neuroscience in recent years. And deep learning has shown high performance in fMRI data classification and regression, but its requirement for large amounts of data conflicts with the high cost of acquiring fMRI data. METHO...
Autores principales: | Shi, Chenwei, Wang, Yanming, Wu, Yueyang, Chen, Shishuo, Hu, Rongjie, Zhang, Min, Qiu, Bensheng, Wang, Xiaoxiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10330812/ https://www.ncbi.nlm.nih.gov/pubmed/37434766 http://dx.doi.org/10.3389/fnins.2023.1199312 |
Ejemplares similares
-
Attention module improves both performance and interpretability of four‐dimensional functional magnetic resonance imaging decoding neural network
por: Jiang, Zhoufan, et al.
Publicado: (2022) -
Cerebellar Structural Abnormality in Autism Spectrum Disorder: A Magnetic Resonance Imaging Study
por: Lu, Qifang, et al.
Publicado: (2023) -
Heuristic Attention Representation Learning for Self-Supervised Pretraining
por: Tran, Van Nhiem, et al.
Publicado: (2022) -
MAE-Based Self-Supervised Pretraining Algorithm for Heart Rate Estimation of Radar Signals
por: Xiang, Yashan, et al.
Publicado: (2023) -
Cough event classification by pretrained deep neural network
por: Liu, Jia-Ming, et al.
Publicado: (2015)