Cargando…
Sustained modulation of primate deep brain circuits with focused ultrasonic waves
BACKGROUND: Transcranial focused ultrasound has the potential to noninvasively modulate deep brain circuits and impart sustained, neuroplastic effects. OBJECTIVE: Bring the approach closer to translations by demonstrating sustained modulation of deep brain circuits and choice behavior in task-perfor...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10330836/ https://www.ncbi.nlm.nih.gov/pubmed/37080427 http://dx.doi.org/10.1016/j.brs.2023.04.012 |
_version_ | 1785070157079511040 |
---|---|
author | Webb, Taylor D. Wilson, Matthew G. Odéen, Henrik Kubanek, Jan |
author_facet | Webb, Taylor D. Wilson, Matthew G. Odéen, Henrik Kubanek, Jan |
author_sort | Webb, Taylor D. |
collection | PubMed |
description | BACKGROUND: Transcranial focused ultrasound has the potential to noninvasively modulate deep brain circuits and impart sustained, neuroplastic effects. OBJECTIVE: Bring the approach closer to translations by demonstrating sustained modulation of deep brain circuits and choice behavior in task-performing non-human primates. METHODS: Low-intensity transcranial ultrasound of 30 s in duration was delivered in a controlled manner into deep brain targets (left or right lateral geniculate nucleus; LGN) of non-human primates while the subjects decided whether a left or a right visual target appeared first. While the animals performed the task, we recorded intracranial EEG from occipital screws. The ultrasound was delivered into the deep brain targets daily for a period of more than 6 months. RESULTS: The brief stimulation induced effects on choice behavior that persisted up to 15 minutes and were specific to the sonicated target. Stimulation of the left/right LGN increased the proportion of rightward/leftward choices. These effects were accompanied by an increase in gamma activity over visual cortex. The contralateral effect on choice behavior and the increase in gamma, compared to sham stimulation, suggest that the stimulation excited the target neural circuits. There were no detrimental effects on the animals’ discrimination performance over the months-long course of the stimulation. CONCLUSION: This study demonstrates that brief, 30-s ultrasonic stimulation induces neuroplastic effects specifically in the target deep brain circuits, and that the stimulation can be applied daily without detrimental effects. These findings encourage repeated applications of transcranial ultrasound to malfunctioning deep brain circuits in humans with the goal of providing a durable therapeutic reset. |
format | Online Article Text |
id | pubmed-10330836 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
record_format | MEDLINE/PubMed |
spelling | pubmed-103308362023-07-10 Sustained modulation of primate deep brain circuits with focused ultrasonic waves Webb, Taylor D. Wilson, Matthew G. Odéen, Henrik Kubanek, Jan Brain Stimul Article BACKGROUND: Transcranial focused ultrasound has the potential to noninvasively modulate deep brain circuits and impart sustained, neuroplastic effects. OBJECTIVE: Bring the approach closer to translations by demonstrating sustained modulation of deep brain circuits and choice behavior in task-performing non-human primates. METHODS: Low-intensity transcranial ultrasound of 30 s in duration was delivered in a controlled manner into deep brain targets (left or right lateral geniculate nucleus; LGN) of non-human primates while the subjects decided whether a left or a right visual target appeared first. While the animals performed the task, we recorded intracranial EEG from occipital screws. The ultrasound was delivered into the deep brain targets daily for a period of more than 6 months. RESULTS: The brief stimulation induced effects on choice behavior that persisted up to 15 minutes and were specific to the sonicated target. Stimulation of the left/right LGN increased the proportion of rightward/leftward choices. These effects were accompanied by an increase in gamma activity over visual cortex. The contralateral effect on choice behavior and the increase in gamma, compared to sham stimulation, suggest that the stimulation excited the target neural circuits. There were no detrimental effects on the animals’ discrimination performance over the months-long course of the stimulation. CONCLUSION: This study demonstrates that brief, 30-s ultrasonic stimulation induces neuroplastic effects specifically in the target deep brain circuits, and that the stimulation can be applied daily without detrimental effects. These findings encourage repeated applications of transcranial ultrasound to malfunctioning deep brain circuits in humans with the goal of providing a durable therapeutic reset. 2023 2023-04-18 /pmc/articles/PMC10330836/ /pubmed/37080427 http://dx.doi.org/10.1016/j.brs.2023.04.012 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). |
spellingShingle | Article Webb, Taylor D. Wilson, Matthew G. Odéen, Henrik Kubanek, Jan Sustained modulation of primate deep brain circuits with focused ultrasonic waves |
title | Sustained modulation of primate deep brain circuits with focused ultrasonic waves |
title_full | Sustained modulation of primate deep brain circuits with focused ultrasonic waves |
title_fullStr | Sustained modulation of primate deep brain circuits with focused ultrasonic waves |
title_full_unstemmed | Sustained modulation of primate deep brain circuits with focused ultrasonic waves |
title_short | Sustained modulation of primate deep brain circuits with focused ultrasonic waves |
title_sort | sustained modulation of primate deep brain circuits with focused ultrasonic waves |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10330836/ https://www.ncbi.nlm.nih.gov/pubmed/37080427 http://dx.doi.org/10.1016/j.brs.2023.04.012 |
work_keys_str_mv | AT webbtaylord sustainedmodulationofprimatedeepbraincircuitswithfocusedultrasonicwaves AT wilsonmatthewg sustainedmodulationofprimatedeepbraincircuitswithfocusedultrasonicwaves AT odeenhenrik sustainedmodulationofprimatedeepbraincircuitswithfocusedultrasonicwaves AT kubanekjan sustainedmodulationofprimatedeepbraincircuitswithfocusedultrasonicwaves |