Cargando…
Predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by CT-based ensemble deep learning: a retrospective study
BACKGROUND: Only around 20–30% of patients with non-small-cell lung cancer (NCSLC) have durable benefit from immune-checkpoint inhibitors. Although tissue-based biomarkers (eg, PD-L1) are limited by suboptimal performance, tissue availability, and tumour heterogeneity, radiographic images might holi...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10330920/ https://www.ncbi.nlm.nih.gov/pubmed/37268451 http://dx.doi.org/10.1016/S2589-7500(23)00082-1 |
_version_ | 1785070158048395264 |
---|---|
author | Saad, Maliazurina B Hong, Lingzhi Aminu, Muhammad Vokes, Natalie I Chen, Pingjun Salehjahromi, Morteza Qin, Kang Sujit, Sheeba J Lu, Xuetao Young, Elliana Al-Tashi, Qasem Qureshi, Rizwan Wu, Carol C Carter, Brett W Lin, Steven H Lee, Percy P Gandhi, Saumil Chang, Joe Y Li, Ruijiang Gensheimer, Michael F Wakelee, Heather A Neal, Joel W Lee, Hyun-Sung Cheng, Chao Velcheti, Vamsidhar Lou, Yanyan Petranovic, Milena Rinsurongkawong, Waree Le, Xiuning Rinsurongkawong, Vadeerat Spelman, Amy Elamin, Yasir Y Negrao, Marcelo V Skoulidis, Ferdinandos Gay, Carl M Cascone, Tina Antonoff, Mara B Sepesi, Boris Lewis, Jeff Wistuba, Ignacio I Hazle, John D Chung, Caroline Jaffray, David Gibbons, Don L Vaporciyan, Ara Lee, J Jack Heymach, John V Zhang, Jianjun Wu, Jia |
author_facet | Saad, Maliazurina B Hong, Lingzhi Aminu, Muhammad Vokes, Natalie I Chen, Pingjun Salehjahromi, Morteza Qin, Kang Sujit, Sheeba J Lu, Xuetao Young, Elliana Al-Tashi, Qasem Qureshi, Rizwan Wu, Carol C Carter, Brett W Lin, Steven H Lee, Percy P Gandhi, Saumil Chang, Joe Y Li, Ruijiang Gensheimer, Michael F Wakelee, Heather A Neal, Joel W Lee, Hyun-Sung Cheng, Chao Velcheti, Vamsidhar Lou, Yanyan Petranovic, Milena Rinsurongkawong, Waree Le, Xiuning Rinsurongkawong, Vadeerat Spelman, Amy Elamin, Yasir Y Negrao, Marcelo V Skoulidis, Ferdinandos Gay, Carl M Cascone, Tina Antonoff, Mara B Sepesi, Boris Lewis, Jeff Wistuba, Ignacio I Hazle, John D Chung, Caroline Jaffray, David Gibbons, Don L Vaporciyan, Ara Lee, J Jack Heymach, John V Zhang, Jianjun Wu, Jia |
author_sort | Saad, Maliazurina B |
collection | PubMed |
description | BACKGROUND: Only around 20–30% of patients with non-small-cell lung cancer (NCSLC) have durable benefit from immune-checkpoint inhibitors. Although tissue-based biomarkers (eg, PD-L1) are limited by suboptimal performance, tissue availability, and tumour heterogeneity, radiographic images might holistically capture the underlying cancer biology. We aimed to investigate the application of deep learning on chest CT scans to derive an imaging signature of response to immune checkpoint inhibitors and evaluate its added value in the clinical context. METHODS: In this retrospective modelling study, 976 patients with metastatic, EGFR/ALK wild-type NSCLC treated with immune checkpoint inhibitors at MD Anderson and Stanford were enrolled from Jan 1, 2014, to Feb 29, 2020. We built and tested an ensemble deep learning model on pretreatment CTs (Deep-CT) to predict overall survival and progression-free survival after treatment with immune checkpoint inhibitors. We also evaluated the added predictive value of the Deep-CT model in the context of existing clinicopathological and radiological metrics. FINDINGS: Our Deep-CT model demonstrated robust stratification of patient survival of the MD Anderson testing set, which was validated in the external Stanford set. The performance of the Deep-CT model remained significant on subgroup analyses stratified by PD-L1, histology, age, sex, and race. In univariate analysis, Deep-CT outperformed the conventional risk factors, including histology, smoking status, and PD-L1 expression, and remained an independent predictor after multivariate adjustment. Integrating the Deep-CT model with conventional risk factors demonstrated significantly improved prediction performance, with overall survival C-index increases from 0·70 (clinical model) to 0·75 (composite model) during testing. On the other hand, the deep learning risk scores correlated with some radiomics features, but radiomics alone could not reach the performance level of deep learning, indicating that the deep learning model effectively captured additional imaging patterns beyond known radiomics features. INTERPRETATION: This proof-of-concept study shows that automated profiling of radiographic scans through deep learning can provide orthogonal information independent of existing clinicopathological biomarkers, bringing the goal of precision immunotherapy for patients with NSCLC closer. |
format | Online Article Text |
id | pubmed-10330920 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
record_format | MEDLINE/PubMed |
spelling | pubmed-103309202023-07-10 Predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by CT-based ensemble deep learning: a retrospective study Saad, Maliazurina B Hong, Lingzhi Aminu, Muhammad Vokes, Natalie I Chen, Pingjun Salehjahromi, Morteza Qin, Kang Sujit, Sheeba J Lu, Xuetao Young, Elliana Al-Tashi, Qasem Qureshi, Rizwan Wu, Carol C Carter, Brett W Lin, Steven H Lee, Percy P Gandhi, Saumil Chang, Joe Y Li, Ruijiang Gensheimer, Michael F Wakelee, Heather A Neal, Joel W Lee, Hyun-Sung Cheng, Chao Velcheti, Vamsidhar Lou, Yanyan Petranovic, Milena Rinsurongkawong, Waree Le, Xiuning Rinsurongkawong, Vadeerat Spelman, Amy Elamin, Yasir Y Negrao, Marcelo V Skoulidis, Ferdinandos Gay, Carl M Cascone, Tina Antonoff, Mara B Sepesi, Boris Lewis, Jeff Wistuba, Ignacio I Hazle, John D Chung, Caroline Jaffray, David Gibbons, Don L Vaporciyan, Ara Lee, J Jack Heymach, John V Zhang, Jianjun Wu, Jia Lancet Digit Health Article BACKGROUND: Only around 20–30% of patients with non-small-cell lung cancer (NCSLC) have durable benefit from immune-checkpoint inhibitors. Although tissue-based biomarkers (eg, PD-L1) are limited by suboptimal performance, tissue availability, and tumour heterogeneity, radiographic images might holistically capture the underlying cancer biology. We aimed to investigate the application of deep learning on chest CT scans to derive an imaging signature of response to immune checkpoint inhibitors and evaluate its added value in the clinical context. METHODS: In this retrospective modelling study, 976 patients with metastatic, EGFR/ALK wild-type NSCLC treated with immune checkpoint inhibitors at MD Anderson and Stanford were enrolled from Jan 1, 2014, to Feb 29, 2020. We built and tested an ensemble deep learning model on pretreatment CTs (Deep-CT) to predict overall survival and progression-free survival after treatment with immune checkpoint inhibitors. We also evaluated the added predictive value of the Deep-CT model in the context of existing clinicopathological and radiological metrics. FINDINGS: Our Deep-CT model demonstrated robust stratification of patient survival of the MD Anderson testing set, which was validated in the external Stanford set. The performance of the Deep-CT model remained significant on subgroup analyses stratified by PD-L1, histology, age, sex, and race. In univariate analysis, Deep-CT outperformed the conventional risk factors, including histology, smoking status, and PD-L1 expression, and remained an independent predictor after multivariate adjustment. Integrating the Deep-CT model with conventional risk factors demonstrated significantly improved prediction performance, with overall survival C-index increases from 0·70 (clinical model) to 0·75 (composite model) during testing. On the other hand, the deep learning risk scores correlated with some radiomics features, but radiomics alone could not reach the performance level of deep learning, indicating that the deep learning model effectively captured additional imaging patterns beyond known radiomics features. INTERPRETATION: This proof-of-concept study shows that automated profiling of radiographic scans through deep learning can provide orthogonal information independent of existing clinicopathological biomarkers, bringing the goal of precision immunotherapy for patients with NSCLC closer. 2023-07 2023-05-31 /pmc/articles/PMC10330920/ /pubmed/37268451 http://dx.doi.org/10.1016/S2589-7500(23)00082-1 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an Open Access article under the CC BY-NC-ND 4.0 license. |
spellingShingle | Article Saad, Maliazurina B Hong, Lingzhi Aminu, Muhammad Vokes, Natalie I Chen, Pingjun Salehjahromi, Morteza Qin, Kang Sujit, Sheeba J Lu, Xuetao Young, Elliana Al-Tashi, Qasem Qureshi, Rizwan Wu, Carol C Carter, Brett W Lin, Steven H Lee, Percy P Gandhi, Saumil Chang, Joe Y Li, Ruijiang Gensheimer, Michael F Wakelee, Heather A Neal, Joel W Lee, Hyun-Sung Cheng, Chao Velcheti, Vamsidhar Lou, Yanyan Petranovic, Milena Rinsurongkawong, Waree Le, Xiuning Rinsurongkawong, Vadeerat Spelman, Amy Elamin, Yasir Y Negrao, Marcelo V Skoulidis, Ferdinandos Gay, Carl M Cascone, Tina Antonoff, Mara B Sepesi, Boris Lewis, Jeff Wistuba, Ignacio I Hazle, John D Chung, Caroline Jaffray, David Gibbons, Don L Vaporciyan, Ara Lee, J Jack Heymach, John V Zhang, Jianjun Wu, Jia Predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by CT-based ensemble deep learning: a retrospective study |
title | Predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by CT-based ensemble deep learning: a retrospective study |
title_full | Predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by CT-based ensemble deep learning: a retrospective study |
title_fullStr | Predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by CT-based ensemble deep learning: a retrospective study |
title_full_unstemmed | Predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by CT-based ensemble deep learning: a retrospective study |
title_short | Predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by CT-based ensemble deep learning: a retrospective study |
title_sort | predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by ct-based ensemble deep learning: a retrospective study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10330920/ https://www.ncbi.nlm.nih.gov/pubmed/37268451 http://dx.doi.org/10.1016/S2589-7500(23)00082-1 |
work_keys_str_mv | AT saadmaliazurinab predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT honglingzhi predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT aminumuhammad predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT vokesnataliei predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT chenpingjun predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT salehjahromimorteza predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT qinkang predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT sujitsheebaj predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT luxuetao predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT youngelliana predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT altashiqasem predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT qureshirizwan predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT wucarolc predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT carterbrettw predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT linstevenh predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT leepercyp predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT gandhisaumil predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT changjoey predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT liruijiang predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT gensheimermichaelf predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT wakeleeheathera predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT nealjoelw predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT leehyunsung predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT chengchao predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT velchetivamsidhar predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT louyanyan predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT petranovicmilena predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT rinsurongkawongwaree predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT lexiuning predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT rinsurongkawongvadeerat predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT spelmanamy predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT elaminyasiry predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT negraomarcelov predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT skoulidisferdinandos predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT gaycarlm predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT casconetina predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT antonoffmarab predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT sepesiboris predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT lewisjeff predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT wistubaignacioi predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT hazlejohnd predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT chungcaroline predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT jaffraydavid predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT gibbonsdonl predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT vaporciyanara predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT leejjack predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT heymachjohnv predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT zhangjianjun predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy AT wujia predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy |