Cargando…

Predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by CT-based ensemble deep learning: a retrospective study

BACKGROUND: Only around 20–30% of patients with non-small-cell lung cancer (NCSLC) have durable benefit from immune-checkpoint inhibitors. Although tissue-based biomarkers (eg, PD-L1) are limited by suboptimal performance, tissue availability, and tumour heterogeneity, radiographic images might holi...

Descripción completa

Detalles Bibliográficos
Autores principales: Saad, Maliazurina B, Hong, Lingzhi, Aminu, Muhammad, Vokes, Natalie I, Chen, Pingjun, Salehjahromi, Morteza, Qin, Kang, Sujit, Sheeba J, Lu, Xuetao, Young, Elliana, Al-Tashi, Qasem, Qureshi, Rizwan, Wu, Carol C, Carter, Brett W, Lin, Steven H, Lee, Percy P, Gandhi, Saumil, Chang, Joe Y, Li, Ruijiang, Gensheimer, Michael F, Wakelee, Heather A, Neal, Joel W, Lee, Hyun-Sung, Cheng, Chao, Velcheti, Vamsidhar, Lou, Yanyan, Petranovic, Milena, Rinsurongkawong, Waree, Le, Xiuning, Rinsurongkawong, Vadeerat, Spelman, Amy, Elamin, Yasir Y, Negrao, Marcelo V, Skoulidis, Ferdinandos, Gay, Carl M, Cascone, Tina, Antonoff, Mara B, Sepesi, Boris, Lewis, Jeff, Wistuba, Ignacio I, Hazle, John D, Chung, Caroline, Jaffray, David, Gibbons, Don L, Vaporciyan, Ara, Lee, J Jack, Heymach, John V, Zhang, Jianjun, Wu, Jia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10330920/
https://www.ncbi.nlm.nih.gov/pubmed/37268451
http://dx.doi.org/10.1016/S2589-7500(23)00082-1
_version_ 1785070158048395264
author Saad, Maliazurina B
Hong, Lingzhi
Aminu, Muhammad
Vokes, Natalie I
Chen, Pingjun
Salehjahromi, Morteza
Qin, Kang
Sujit, Sheeba J
Lu, Xuetao
Young, Elliana
Al-Tashi, Qasem
Qureshi, Rizwan
Wu, Carol C
Carter, Brett W
Lin, Steven H
Lee, Percy P
Gandhi, Saumil
Chang, Joe Y
Li, Ruijiang
Gensheimer, Michael F
Wakelee, Heather A
Neal, Joel W
Lee, Hyun-Sung
Cheng, Chao
Velcheti, Vamsidhar
Lou, Yanyan
Petranovic, Milena
Rinsurongkawong, Waree
Le, Xiuning
Rinsurongkawong, Vadeerat
Spelman, Amy
Elamin, Yasir Y
Negrao, Marcelo V
Skoulidis, Ferdinandos
Gay, Carl M
Cascone, Tina
Antonoff, Mara B
Sepesi, Boris
Lewis, Jeff
Wistuba, Ignacio I
Hazle, John D
Chung, Caroline
Jaffray, David
Gibbons, Don L
Vaporciyan, Ara
Lee, J Jack
Heymach, John V
Zhang, Jianjun
Wu, Jia
author_facet Saad, Maliazurina B
Hong, Lingzhi
Aminu, Muhammad
Vokes, Natalie I
Chen, Pingjun
Salehjahromi, Morteza
Qin, Kang
Sujit, Sheeba J
Lu, Xuetao
Young, Elliana
Al-Tashi, Qasem
Qureshi, Rizwan
Wu, Carol C
Carter, Brett W
Lin, Steven H
Lee, Percy P
Gandhi, Saumil
Chang, Joe Y
Li, Ruijiang
Gensheimer, Michael F
Wakelee, Heather A
Neal, Joel W
Lee, Hyun-Sung
Cheng, Chao
Velcheti, Vamsidhar
Lou, Yanyan
Petranovic, Milena
Rinsurongkawong, Waree
Le, Xiuning
Rinsurongkawong, Vadeerat
Spelman, Amy
Elamin, Yasir Y
Negrao, Marcelo V
Skoulidis, Ferdinandos
Gay, Carl M
Cascone, Tina
Antonoff, Mara B
Sepesi, Boris
Lewis, Jeff
Wistuba, Ignacio I
Hazle, John D
Chung, Caroline
Jaffray, David
Gibbons, Don L
Vaporciyan, Ara
Lee, J Jack
Heymach, John V
Zhang, Jianjun
Wu, Jia
author_sort Saad, Maliazurina B
collection PubMed
description BACKGROUND: Only around 20–30% of patients with non-small-cell lung cancer (NCSLC) have durable benefit from immune-checkpoint inhibitors. Although tissue-based biomarkers (eg, PD-L1) are limited by suboptimal performance, tissue availability, and tumour heterogeneity, radiographic images might holistically capture the underlying cancer biology. We aimed to investigate the application of deep learning on chest CT scans to derive an imaging signature of response to immune checkpoint inhibitors and evaluate its added value in the clinical context. METHODS: In this retrospective modelling study, 976 patients with metastatic, EGFR/ALK wild-type NSCLC treated with immune checkpoint inhibitors at MD Anderson and Stanford were enrolled from Jan 1, 2014, to Feb 29, 2020. We built and tested an ensemble deep learning model on pretreatment CTs (Deep-CT) to predict overall survival and progression-free survival after treatment with immune checkpoint inhibitors. We also evaluated the added predictive value of the Deep-CT model in the context of existing clinicopathological and radiological metrics. FINDINGS: Our Deep-CT model demonstrated robust stratification of patient survival of the MD Anderson testing set, which was validated in the external Stanford set. The performance of the Deep-CT model remained significant on subgroup analyses stratified by PD-L1, histology, age, sex, and race. In univariate analysis, Deep-CT outperformed the conventional risk factors, including histology, smoking status, and PD-L1 expression, and remained an independent predictor after multivariate adjustment. Integrating the Deep-CT model with conventional risk factors demonstrated significantly improved prediction performance, with overall survival C-index increases from 0·70 (clinical model) to 0·75 (composite model) during testing. On the other hand, the deep learning risk scores correlated with some radiomics features, but radiomics alone could not reach the performance level of deep learning, indicating that the deep learning model effectively captured additional imaging patterns beyond known radiomics features. INTERPRETATION: This proof-of-concept study shows that automated profiling of radiographic scans through deep learning can provide orthogonal information independent of existing clinicopathological biomarkers, bringing the goal of precision immunotherapy for patients with NSCLC closer.
format Online
Article
Text
id pubmed-10330920
institution National Center for Biotechnology Information
language English
publishDate 2023
record_format MEDLINE/PubMed
spelling pubmed-103309202023-07-10 Predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by CT-based ensemble deep learning: a retrospective study Saad, Maliazurina B Hong, Lingzhi Aminu, Muhammad Vokes, Natalie I Chen, Pingjun Salehjahromi, Morteza Qin, Kang Sujit, Sheeba J Lu, Xuetao Young, Elliana Al-Tashi, Qasem Qureshi, Rizwan Wu, Carol C Carter, Brett W Lin, Steven H Lee, Percy P Gandhi, Saumil Chang, Joe Y Li, Ruijiang Gensheimer, Michael F Wakelee, Heather A Neal, Joel W Lee, Hyun-Sung Cheng, Chao Velcheti, Vamsidhar Lou, Yanyan Petranovic, Milena Rinsurongkawong, Waree Le, Xiuning Rinsurongkawong, Vadeerat Spelman, Amy Elamin, Yasir Y Negrao, Marcelo V Skoulidis, Ferdinandos Gay, Carl M Cascone, Tina Antonoff, Mara B Sepesi, Boris Lewis, Jeff Wistuba, Ignacio I Hazle, John D Chung, Caroline Jaffray, David Gibbons, Don L Vaporciyan, Ara Lee, J Jack Heymach, John V Zhang, Jianjun Wu, Jia Lancet Digit Health Article BACKGROUND: Only around 20–30% of patients with non-small-cell lung cancer (NCSLC) have durable benefit from immune-checkpoint inhibitors. Although tissue-based biomarkers (eg, PD-L1) are limited by suboptimal performance, tissue availability, and tumour heterogeneity, radiographic images might holistically capture the underlying cancer biology. We aimed to investigate the application of deep learning on chest CT scans to derive an imaging signature of response to immune checkpoint inhibitors and evaluate its added value in the clinical context. METHODS: In this retrospective modelling study, 976 patients with metastatic, EGFR/ALK wild-type NSCLC treated with immune checkpoint inhibitors at MD Anderson and Stanford were enrolled from Jan 1, 2014, to Feb 29, 2020. We built and tested an ensemble deep learning model on pretreatment CTs (Deep-CT) to predict overall survival and progression-free survival after treatment with immune checkpoint inhibitors. We also evaluated the added predictive value of the Deep-CT model in the context of existing clinicopathological and radiological metrics. FINDINGS: Our Deep-CT model demonstrated robust stratification of patient survival of the MD Anderson testing set, which was validated in the external Stanford set. The performance of the Deep-CT model remained significant on subgroup analyses stratified by PD-L1, histology, age, sex, and race. In univariate analysis, Deep-CT outperformed the conventional risk factors, including histology, smoking status, and PD-L1 expression, and remained an independent predictor after multivariate adjustment. Integrating the Deep-CT model with conventional risk factors demonstrated significantly improved prediction performance, with overall survival C-index increases from 0·70 (clinical model) to 0·75 (composite model) during testing. On the other hand, the deep learning risk scores correlated with some radiomics features, but radiomics alone could not reach the performance level of deep learning, indicating that the deep learning model effectively captured additional imaging patterns beyond known radiomics features. INTERPRETATION: This proof-of-concept study shows that automated profiling of radiographic scans through deep learning can provide orthogonal information independent of existing clinicopathological biomarkers, bringing the goal of precision immunotherapy for patients with NSCLC closer. 2023-07 2023-05-31 /pmc/articles/PMC10330920/ /pubmed/37268451 http://dx.doi.org/10.1016/S2589-7500(23)00082-1 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an Open Access article under the CC BY-NC-ND 4.0 license.
spellingShingle Article
Saad, Maliazurina B
Hong, Lingzhi
Aminu, Muhammad
Vokes, Natalie I
Chen, Pingjun
Salehjahromi, Morteza
Qin, Kang
Sujit, Sheeba J
Lu, Xuetao
Young, Elliana
Al-Tashi, Qasem
Qureshi, Rizwan
Wu, Carol C
Carter, Brett W
Lin, Steven H
Lee, Percy P
Gandhi, Saumil
Chang, Joe Y
Li, Ruijiang
Gensheimer, Michael F
Wakelee, Heather A
Neal, Joel W
Lee, Hyun-Sung
Cheng, Chao
Velcheti, Vamsidhar
Lou, Yanyan
Petranovic, Milena
Rinsurongkawong, Waree
Le, Xiuning
Rinsurongkawong, Vadeerat
Spelman, Amy
Elamin, Yasir Y
Negrao, Marcelo V
Skoulidis, Ferdinandos
Gay, Carl M
Cascone, Tina
Antonoff, Mara B
Sepesi, Boris
Lewis, Jeff
Wistuba, Ignacio I
Hazle, John D
Chung, Caroline
Jaffray, David
Gibbons, Don L
Vaporciyan, Ara
Lee, J Jack
Heymach, John V
Zhang, Jianjun
Wu, Jia
Predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by CT-based ensemble deep learning: a retrospective study
title Predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by CT-based ensemble deep learning: a retrospective study
title_full Predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by CT-based ensemble deep learning: a retrospective study
title_fullStr Predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by CT-based ensemble deep learning: a retrospective study
title_full_unstemmed Predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by CT-based ensemble deep learning: a retrospective study
title_short Predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by CT-based ensemble deep learning: a retrospective study
title_sort predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by ct-based ensemble deep learning: a retrospective study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10330920/
https://www.ncbi.nlm.nih.gov/pubmed/37268451
http://dx.doi.org/10.1016/S2589-7500(23)00082-1
work_keys_str_mv AT saadmaliazurinab predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT honglingzhi predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT aminumuhammad predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT vokesnataliei predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT chenpingjun predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT salehjahromimorteza predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT qinkang predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT sujitsheebaj predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT luxuetao predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT youngelliana predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT altashiqasem predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT qureshirizwan predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT wucarolc predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT carterbrettw predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT linstevenh predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT leepercyp predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT gandhisaumil predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT changjoey predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT liruijiang predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT gensheimermichaelf predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT wakeleeheathera predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT nealjoelw predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT leehyunsung predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT chengchao predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT velchetivamsidhar predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT louyanyan predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT petranovicmilena predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT rinsurongkawongwaree predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT lexiuning predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT rinsurongkawongvadeerat predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT spelmanamy predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT elaminyasiry predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT negraomarcelov predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT skoulidisferdinandos predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT gaycarlm predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT casconetina predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT antonoffmarab predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT sepesiboris predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT lewisjeff predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT wistubaignacioi predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT hazlejohnd predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT chungcaroline predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT jaffraydavid predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT gibbonsdonl predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT vaporciyanara predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT leejjack predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT heymachjohnv predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT zhangjianjun predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy
AT wujia predictingbenefitfromimmunecheckpointinhibitorsinpatientswithnonsmallcelllungcancerbyctbasedensembledeeplearningaretrospectivestudy