Cargando…
Autoencoder-based myoelectric controller for prosthetic hands
In the past, linear dimensionality-reduction techniques, such as Principal Component Analysis, have been used to simplify the myoelectric control of high-dimensional prosthetic hands. Nonetheless, their nonlinear counterparts, such as Autoencoders, have been shown to be more effective at compressing...
Autores principales: | Portnova-Fahreeva, Alexandra A., Rizzoglio, Fabio, Mussa-Ivaldi, Ferdinando A., Rombokas, Eric |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331017/ https://www.ncbi.nlm.nih.gov/pubmed/37434753 http://dx.doi.org/10.3389/fbioe.2023.1134135 |
Ejemplares similares
-
Learning to operate a high-dimensional hand via a low-dimensional controller
por: Portnova-Fahreeva, Alexandra A., et al.
Publicado: (2023) -
Linear and Non-linear Dimensionality-Reduction Techniques on Full Hand Kinematics
por: Portnova-Fahreeva, Alexandra A., et al.
Publicado: (2020) -
Dimensionality Reduction of Human Gait for Prosthetic Control
por: Boe, David, et al.
Publicado: (2021) -
Mobile, Game-Based Training for Myoelectric Prosthesis Control
por: Winslow, Brent D., et al.
Publicado: (2018) -
Deep learning and session-specific rapid recalibration for dynamic hand gesture recognition from EMG
por: Karrenbach, Maxim, et al.
Publicado: (2022)