Cargando…
Anatomy-aware self-supervised learning for anomaly detection in chest radiographs
In this study, we present a self-supervised learning (SSL)-based model that enables anatomical structure-based unsupervised anomaly detection (UAD). The model employs an anatomy-aware pasting (AnatPaste) augmentation tool that uses a threshold-based lung segmentation pretext task to create anomalies...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331430/ https://www.ncbi.nlm.nih.gov/pubmed/37434699 http://dx.doi.org/10.1016/j.isci.2023.107086 |