Cargando…
Anatomy-aware self-supervised learning for anomaly detection in chest radiographs
In this study, we present a self-supervised learning (SSL)-based model that enables anatomical structure-based unsupervised anomaly detection (UAD). The model employs an anatomy-aware pasting (AnatPaste) augmentation tool that uses a threshold-based lung segmentation pretext task to create anomalies...
Autores principales: | Sato, Junya, Suzuki, Yuki, Wataya, Tomohiro, Nishigaki, Daiki, Kita, Kosuke, Yamagata, Kazuki, Tomiyama, Noriyuki, Kido, Shoji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331430/ https://www.ncbi.nlm.nih.gov/pubmed/37434699 http://dx.doi.org/10.1016/j.isci.2023.107086 |
Ejemplares similares
-
Bimodal artificial intelligence using TabNet for differentiating spinal cord tumors—Integration of patient background information and images
por: Kita, Kosuke, et al.
Publicado: (2023) -
Unsupervised Deep Anomaly Detection in Chest Radiographs
por: Nakao, Takahiro, et al.
Publicado: (2021) -
Chest L-Transformer: Local Features With Position Attention for Weakly Supervised Chest Radiograph Segmentation and Classification
por: Gu, Hong, et al.
Publicado: (2022) -
Usefulness of Three-Dimensional Iodine Mapping Quantified by Dual-Energy CT for Differentiating Thymic Epithelial Tumors
por: Doi, Shuhei, et al.
Publicado: (2023) -
Abnormal central line position on a chest radiograph: Clue to an uncommon anomaly
por: Abbey, Pooja, et al.
Publicado: (2016)