Cargando…
SCING: Inference of robust, interpretable gene regulatory networks from single cell and spatial transcriptomics
Gene regulatory network (GRN) inference is an integral part of understanding physiology and disease. Single cell/nuclei RNA-seq (scRNA-seq/snRNA-seq) data has been used to elucidate cell-type GRNs; however, the accuracy and speed of current scRNAseq-based GRN approaches are suboptimal. Here, we pres...
Autores principales: | Littman, Russell, Cheng, Michael, Wang, Ning, Peng, Chao, Yang, Xia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331489/ https://www.ncbi.nlm.nih.gov/pubmed/37434694 http://dx.doi.org/10.1016/j.isci.2023.107124 |
Ejemplares similares
-
STGRNS: an interpretable transformer-based method for inferring gene regulatory networks from single-cell transcriptomic data
por: Xu, Jing, et al.
Publicado: (2023) -
Sparse and Compositionally Robust Inference of Microbial Ecological Networks
por: Kurtz, Zachary D., et al.
Publicado: (2015) -
VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics
por: Seninge, Lucas, et al.
Publicado: (2021) -
Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data
por: Pratapa, Aditya, et al.
Publicado: (2020) -
Inferring gene regulatory network from single-cell transcriptomes with graph autoencoder model
por: Wang, Jiacheng, et al.
Publicado: (2023)