Cargando…

Computational workflow for investigating highly variable genes in single-cell RNA-seq across multiple time points and cell types

Here, we present a computational approach for investigating highly variable genes (HVGs) associated with biological pathways of interest, across multiple time points and cell types in single-cell RNA-sequencing (scRNA-seq) data. Using public dengue virus and COVID-19 datasets, we describe steps for...

Descripción completa

Detalles Bibliográficos
Autores principales: Arora, Jantarika Kumar, Opasawatchai, Anunya, Teichmann, Sarah A., Matangkasombut, Ponpan, Charoensawan, Varodom
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331590/
https://www.ncbi.nlm.nih.gov/pubmed/37379219
http://dx.doi.org/10.1016/j.xpro.2023.102387
_version_ 1785070287088254976
author Arora, Jantarika Kumar
Opasawatchai, Anunya
Teichmann, Sarah A.
Matangkasombut, Ponpan
Charoensawan, Varodom
author_facet Arora, Jantarika Kumar
Opasawatchai, Anunya
Teichmann, Sarah A.
Matangkasombut, Ponpan
Charoensawan, Varodom
author_sort Arora, Jantarika Kumar
collection PubMed
description Here, we present a computational approach for investigating highly variable genes (HVGs) associated with biological pathways of interest, across multiple time points and cell types in single-cell RNA-sequencing (scRNA-seq) data. Using public dengue virus and COVID-19 datasets, we describe steps for using the framework to characterize the dynamic expression levels of HVGs related to common and cell-type-specific biological pathways over multiple immune cell types. For complete details on the use and execution of this protocol, please refer to Arora et al.(1)
format Online
Article
Text
id pubmed-10331590
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-103315902023-07-11 Computational workflow for investigating highly variable genes in single-cell RNA-seq across multiple time points and cell types Arora, Jantarika Kumar Opasawatchai, Anunya Teichmann, Sarah A. Matangkasombut, Ponpan Charoensawan, Varodom STAR Protoc Protocol Here, we present a computational approach for investigating highly variable genes (HVGs) associated with biological pathways of interest, across multiple time points and cell types in single-cell RNA-sequencing (scRNA-seq) data. Using public dengue virus and COVID-19 datasets, we describe steps for using the framework to characterize the dynamic expression levels of HVGs related to common and cell-type-specific biological pathways over multiple immune cell types. For complete details on the use and execution of this protocol, please refer to Arora et al.(1) Elsevier 2023-06-27 /pmc/articles/PMC10331590/ /pubmed/37379219 http://dx.doi.org/10.1016/j.xpro.2023.102387 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Protocol
Arora, Jantarika Kumar
Opasawatchai, Anunya
Teichmann, Sarah A.
Matangkasombut, Ponpan
Charoensawan, Varodom
Computational workflow for investigating highly variable genes in single-cell RNA-seq across multiple time points and cell types
title Computational workflow for investigating highly variable genes in single-cell RNA-seq across multiple time points and cell types
title_full Computational workflow for investigating highly variable genes in single-cell RNA-seq across multiple time points and cell types
title_fullStr Computational workflow for investigating highly variable genes in single-cell RNA-seq across multiple time points and cell types
title_full_unstemmed Computational workflow for investigating highly variable genes in single-cell RNA-seq across multiple time points and cell types
title_short Computational workflow for investigating highly variable genes in single-cell RNA-seq across multiple time points and cell types
title_sort computational workflow for investigating highly variable genes in single-cell rna-seq across multiple time points and cell types
topic Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331590/
https://www.ncbi.nlm.nih.gov/pubmed/37379219
http://dx.doi.org/10.1016/j.xpro.2023.102387
work_keys_str_mv AT arorajantarikakumar computationalworkflowforinvestigatinghighlyvariablegenesinsinglecellrnaseqacrossmultipletimepointsandcelltypes
AT opasawatchaianunya computationalworkflowforinvestigatinghighlyvariablegenesinsinglecellrnaseqacrossmultipletimepointsandcelltypes
AT teichmannsaraha computationalworkflowforinvestigatinghighlyvariablegenesinsinglecellrnaseqacrossmultipletimepointsandcelltypes
AT matangkasombutponpan computationalworkflowforinvestigatinghighlyvariablegenesinsinglecellrnaseqacrossmultipletimepointsandcelltypes
AT charoensawanvarodom computationalworkflowforinvestigatinghighlyvariablegenesinsinglecellrnaseqacrossmultipletimepointsandcelltypes