Cargando…
Computed tomography radiomics signature via machine learning predicts RRM2 and overall survival in hepatocellular carcinoma
BACKGROUND: Radiomics can be used to noninvasively predict molecular markers to address the clinical dilemma that some patients cannot accept invasive procedures. This research evaluated the prognostic significance of the expression level of ribonucleotide reductase regulatory subunit M2 (RRM2) in i...
Autores principales: | Li, Qian, Long, Xiawei, Lin, Yan, Liang, Rong, Li, Yongqiang, Ge, Lianying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331770/ https://www.ncbi.nlm.nih.gov/pubmed/37435222 http://dx.doi.org/10.21037/jgo-23-460 |
Ejemplares similares
-
Preoperative contrast-enhanced computed tomography-based radiomics model for overall survival prediction in hepatocellular carcinoma
por: Deng, Peng-Zhan, et al.
Publicado: (2022) -
Radiomics signature of computed tomography imaging for prediction of survival and chemotherapeutic benefits in gastric cancer
por: Jiang, Yuming, et al.
Publicado: (2018) -
Overall Survival Prediction in Renal Cell Carcinoma Patients Using Computed Tomography Radiomic and Clinical Information
por: Khodabakhshi, Zahra, et al.
Publicado: (2021) -
Overall Survival Prediction in Glioblastoma With Radiomic Features Using Machine Learning
por: Baid, Ujjwal, et al.
Publicado: (2020) -
Computed Tomography Radiomics-Based Prediction of Microvascular Invasion in Hepatocellular Carcinoma
por: Yao, Wenjun, et al.
Publicado: (2022)