Cargando…
Dysfunction of ubiquitin protein ligase MYCBP2 leads to cell resilience in human breast cancers
Breast cancer is the most common type of cancer among women worldwide, and it is estimated that 294 000 new diagnoses and 37 000 deaths will occur each year in the United States alone by 2030. Large-scale genomic studies have identified a number of genetic loci with alterations in breast cancer. How...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331931/ https://www.ncbi.nlm.nih.gov/pubmed/37435531 http://dx.doi.org/10.1093/narcan/zcad036 |
_version_ | 1785070336717357056 |
---|---|
author | Neff, Ryan A Bosch-Gutierrez, Almudena Sun, Yifei Katsyv, Igor Song, Won-min Wang, Minghui Walsh, Martin J Zhang, Bin |
author_facet | Neff, Ryan A Bosch-Gutierrez, Almudena Sun, Yifei Katsyv, Igor Song, Won-min Wang, Minghui Walsh, Martin J Zhang, Bin |
author_sort | Neff, Ryan A |
collection | PubMed |
description | Breast cancer is the most common type of cancer among women worldwide, and it is estimated that 294 000 new diagnoses and 37 000 deaths will occur each year in the United States alone by 2030. Large-scale genomic studies have identified a number of genetic loci with alterations in breast cancer. However, identification of the genes that are critical for tumorgenicity still remains a challenge. Here, we perform a comprehensive functional multi-omics analysis of somatic mutations in breast cancer and identify previously unknown key regulators of breast cancer tumorgenicity. We identify dysregulation of MYCBP2, an E3 ubiquitin ligase and an upstream regulator of mTOR signaling, is accompanied with decreased disease-free survival. We validate MYCBP2 as a key target through depletion siRNA using in vitro apoptosis assays in MCF10A, MCF7 and T47D cells. We demonstrate that MYCBP2 loss is associated with resistance to apoptosis from cisplatin-induced DNA damage and cell cycle changes, and that CHEK1 inhibition can modulate MYCBP2 activity and caspase cleavage. Furthermore, we show that MYCBP2 knockdown is associated with transcriptomic responses in TSC2 and in apoptosis genes and interleukins. Therefore, we show that MYCBP2 is an important genetic target that represents a key node regulating multiple molecular pathways in breast cancer corresponding with apparent drug resistance in our study. |
format | Online Article Text |
id | pubmed-10331931 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-103319312023-07-11 Dysfunction of ubiquitin protein ligase MYCBP2 leads to cell resilience in human breast cancers Neff, Ryan A Bosch-Gutierrez, Almudena Sun, Yifei Katsyv, Igor Song, Won-min Wang, Minghui Walsh, Martin J Zhang, Bin NAR Cancer Cancer Computational Biology Breast cancer is the most common type of cancer among women worldwide, and it is estimated that 294 000 new diagnoses and 37 000 deaths will occur each year in the United States alone by 2030. Large-scale genomic studies have identified a number of genetic loci with alterations in breast cancer. However, identification of the genes that are critical for tumorgenicity still remains a challenge. Here, we perform a comprehensive functional multi-omics analysis of somatic mutations in breast cancer and identify previously unknown key regulators of breast cancer tumorgenicity. We identify dysregulation of MYCBP2, an E3 ubiquitin ligase and an upstream regulator of mTOR signaling, is accompanied with decreased disease-free survival. We validate MYCBP2 as a key target through depletion siRNA using in vitro apoptosis assays in MCF10A, MCF7 and T47D cells. We demonstrate that MYCBP2 loss is associated with resistance to apoptosis from cisplatin-induced DNA damage and cell cycle changes, and that CHEK1 inhibition can modulate MYCBP2 activity and caspase cleavage. Furthermore, we show that MYCBP2 knockdown is associated with transcriptomic responses in TSC2 and in apoptosis genes and interleukins. Therefore, we show that MYCBP2 is an important genetic target that represents a key node regulating multiple molecular pathways in breast cancer corresponding with apparent drug resistance in our study. Oxford University Press 2023-07-10 /pmc/articles/PMC10331931/ /pubmed/37435531 http://dx.doi.org/10.1093/narcan/zcad036 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of NAR Cancer. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Cancer Computational Biology Neff, Ryan A Bosch-Gutierrez, Almudena Sun, Yifei Katsyv, Igor Song, Won-min Wang, Minghui Walsh, Martin J Zhang, Bin Dysfunction of ubiquitin protein ligase MYCBP2 leads to cell resilience in human breast cancers |
title | Dysfunction of ubiquitin protein ligase MYCBP2 leads to cell resilience in human breast cancers |
title_full | Dysfunction of ubiquitin protein ligase MYCBP2 leads to cell resilience in human breast cancers |
title_fullStr | Dysfunction of ubiquitin protein ligase MYCBP2 leads to cell resilience in human breast cancers |
title_full_unstemmed | Dysfunction of ubiquitin protein ligase MYCBP2 leads to cell resilience in human breast cancers |
title_short | Dysfunction of ubiquitin protein ligase MYCBP2 leads to cell resilience in human breast cancers |
title_sort | dysfunction of ubiquitin protein ligase mycbp2 leads to cell resilience in human breast cancers |
topic | Cancer Computational Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331931/ https://www.ncbi.nlm.nih.gov/pubmed/37435531 http://dx.doi.org/10.1093/narcan/zcad036 |
work_keys_str_mv | AT neffryana dysfunctionofubiquitinproteinligasemycbp2leadstocellresilienceinhumanbreastcancers AT boschgutierrezalmudena dysfunctionofubiquitinproteinligasemycbp2leadstocellresilienceinhumanbreastcancers AT sunyifei dysfunctionofubiquitinproteinligasemycbp2leadstocellresilienceinhumanbreastcancers AT katsyvigor dysfunctionofubiquitinproteinligasemycbp2leadstocellresilienceinhumanbreastcancers AT songwonmin dysfunctionofubiquitinproteinligasemycbp2leadstocellresilienceinhumanbreastcancers AT wangminghui dysfunctionofubiquitinproteinligasemycbp2leadstocellresilienceinhumanbreastcancers AT walshmartinj dysfunctionofubiquitinproteinligasemycbp2leadstocellresilienceinhumanbreastcancers AT zhangbin dysfunctionofubiquitinproteinligasemycbp2leadstocellresilienceinhumanbreastcancers |