Cargando…

Pantoea Bacteria Isolated from Three Thrips (Frankliniella occidentalis, Frankliniella intonsa, and Thrips tabaci) in Korea and Their Symbiotic Roles in Host Insect Development

Gut symbionts play crucial roles in host development by producing nutrients and defending against pathogens. Phloem-feeding insects in particular lack essential nutrients in their diets, and thus, gut symbionts are required for their development. Gram-negative Pantoea spp. are known to be symbiotic...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Gahyeon, Kim, Yonggyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society for Microbiology and Biotechnology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331939/
https://www.ncbi.nlm.nih.gov/pubmed/36994621
http://dx.doi.org/10.4014/jmb.2301.01018
_version_ 1785070338685534208
author Jin, Gahyeon
Kim, Yonggyun
author_facet Jin, Gahyeon
Kim, Yonggyun
author_sort Jin, Gahyeon
collection PubMed
description Gut symbionts play crucial roles in host development by producing nutrients and defending against pathogens. Phloem-feeding insects in particular lack essential nutrients in their diets, and thus, gut symbionts are required for their development. Gram-negative Pantoea spp. are known to be symbiotic to the western flower thrips (Frankliniella occidentalis). However, their bacterial characteristics have not been thoroughly investigated. In this study, we isolated three different bacteria (BFoK1, BFiK1, and BTtK1) from F. occidentalis, F. intonsa, and T. tabaci. The bacterial isolates of all three species contained Pantoea spp. Their 16S rRNA sequences indicated that BFoK1 and BTtK1 were similar to P. agglomerans, while BFiK1 was similar to P. dispersa. These predictions were supported by the biochemical characteristics assessed by fatty acid composition and organic carbon utilization. In the bacterial morphological analysis, BFoK1 and BTtK1 were distinct from BFiK1. All these bacteria were relatively resistant to tetracycline compared to ampicillin and kanamycin, in which BFoK1 and BTtK1 were different from BFiK1. Feeding ampicillin (100,000 ppm) reduced the bacterial density in thrips and retarded the development of F. occidentalis. The addition of BFoK1 bacteria, however, rescued the retarded development. These findings indicate that Pantoea bacteria are symbionts to different species of thrips.
format Online
Article
Text
id pubmed-10331939
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Korean Society for Microbiology and Biotechnology
record_format MEDLINE/PubMed
spelling pubmed-103319392023-07-11 Pantoea Bacteria Isolated from Three Thrips (Frankliniella occidentalis, Frankliniella intonsa, and Thrips tabaci) in Korea and Their Symbiotic Roles in Host Insect Development Jin, Gahyeon Kim, Yonggyun J Microbiol Biotechnol Research article Gut symbionts play crucial roles in host development by producing nutrients and defending against pathogens. Phloem-feeding insects in particular lack essential nutrients in their diets, and thus, gut symbionts are required for their development. Gram-negative Pantoea spp. are known to be symbiotic to the western flower thrips (Frankliniella occidentalis). However, their bacterial characteristics have not been thoroughly investigated. In this study, we isolated three different bacteria (BFoK1, BFiK1, and BTtK1) from F. occidentalis, F. intonsa, and T. tabaci. The bacterial isolates of all three species contained Pantoea spp. Their 16S rRNA sequences indicated that BFoK1 and BTtK1 were similar to P. agglomerans, while BFiK1 was similar to P. dispersa. These predictions were supported by the biochemical characteristics assessed by fatty acid composition and organic carbon utilization. In the bacterial morphological analysis, BFoK1 and BTtK1 were distinct from BFiK1. All these bacteria were relatively resistant to tetracycline compared to ampicillin and kanamycin, in which BFoK1 and BTtK1 were different from BFiK1. Feeding ampicillin (100,000 ppm) reduced the bacterial density in thrips and retarded the development of F. occidentalis. The addition of BFoK1 bacteria, however, rescued the retarded development. These findings indicate that Pantoea bacteria are symbionts to different species of thrips. The Korean Society for Microbiology and Biotechnology 2023-06-28 2023-03-13 /pmc/articles/PMC10331939/ /pubmed/36994621 http://dx.doi.org/10.4014/jmb.2301.01018 Text en Copyright © 2023 by the authors. Licensee KMB https://creativecommons.org/licenses/by/4.0/This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)
spellingShingle Research article
Jin, Gahyeon
Kim, Yonggyun
Pantoea Bacteria Isolated from Three Thrips (Frankliniella occidentalis, Frankliniella intonsa, and Thrips tabaci) in Korea and Their Symbiotic Roles in Host Insect Development
title Pantoea Bacteria Isolated from Three Thrips (Frankliniella occidentalis, Frankliniella intonsa, and Thrips tabaci) in Korea and Their Symbiotic Roles in Host Insect Development
title_full Pantoea Bacteria Isolated from Three Thrips (Frankliniella occidentalis, Frankliniella intonsa, and Thrips tabaci) in Korea and Their Symbiotic Roles in Host Insect Development
title_fullStr Pantoea Bacteria Isolated from Three Thrips (Frankliniella occidentalis, Frankliniella intonsa, and Thrips tabaci) in Korea and Their Symbiotic Roles in Host Insect Development
title_full_unstemmed Pantoea Bacteria Isolated from Three Thrips (Frankliniella occidentalis, Frankliniella intonsa, and Thrips tabaci) in Korea and Their Symbiotic Roles in Host Insect Development
title_short Pantoea Bacteria Isolated from Three Thrips (Frankliniella occidentalis, Frankliniella intonsa, and Thrips tabaci) in Korea and Their Symbiotic Roles in Host Insect Development
title_sort pantoea bacteria isolated from three thrips (frankliniella occidentalis, frankliniella intonsa, and thrips tabaci) in korea and their symbiotic roles in host insect development
topic Research article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331939/
https://www.ncbi.nlm.nih.gov/pubmed/36994621
http://dx.doi.org/10.4014/jmb.2301.01018
work_keys_str_mv AT jingahyeon pantoeabacteriaisolatedfromthreethripsfrankliniellaoccidentalisfrankliniellaintonsaandthripstabaciinkoreaandtheirsymbioticrolesinhostinsectdevelopment
AT kimyonggyun pantoeabacteriaisolatedfromthreethripsfrankliniellaoccidentalisfrankliniellaintonsaandthripstabaciinkoreaandtheirsymbioticrolesinhostinsectdevelopment