Cargando…
XGBoost-based machine learning test improves the accuracy of hemorrhage prediction among geriatric patients with long-term administration of rivaroxaban
BACKGROUND: Hemorrhage is a potential and serious adverse drug reaction, especially for geriatric patients with long-term administration of rivaroxaban. It is essential to establish an effective model for predicting bleeding events, which could improve the safety of rivaroxaban use in clinical pract...
Autores principales: | Chen, Cheng, Yin, Chun, Wang, Yanhu, Zeng, Jing, Wang, Shuili, Bao, Yurong, Xu, Yixuan, Liu, Tongbo, Fan, Jiao, Liu, Xian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10332061/ https://www.ncbi.nlm.nih.gov/pubmed/37430193 http://dx.doi.org/10.1186/s12877-023-04049-z |
Ejemplares similares
-
XGBoost Machine Learning Algorithm for Prediction of Outcome in Aneurysmal Subarachnoid Hemorrhage
por: Wang, Ruoran, et al.
Publicado: (2022) -
Comparison of co-administration of amiodarone and rivaroxaban to co-administration of dronedarone and rivaroxaban for hemorrhage risks after atrial fibrillation ablation
por: Zhang, Peng, et al.
Publicado: (2022) -
Accuracy Improvement of IOL Power Prediction for Highly Myopic Eyes With an XGBoost Machine Learning-Based Calculator
por: Wei, Ling, et al.
Publicado: (2020) -
Identification of Cancer-Related Long Non-Coding RNAs Using XGBoost With High Accuracy
por: Zhang, Xuan, et al.
Publicado: (2019) -
Non-contact screening system based for COVID-19 on XGBoost and logistic regression
por: Dong, Chunjiao, et al.
Publicado: (2022)