Cargando…
Modeling dragonfly population data with a Bayesian bivariate geometric mixed-effects model
We develop a generalized linear mixed model (GLMM) for bivariate count responses for statistically analyzing dragonfly population data from the Northern Netherlands. The populations of the threatened dragonfly species Aeshna viridis were counted in the years 2015–2018 at 17 different locations (pond...
Autores principales: | van Oppen, Yulan B., Milder-Mulderij, Gabi, Brochard, Christophe, Wiggers, Rink, de Vries, Saskia, Krijnen, Wim P., Grzegorczyk, Marco A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10332241/ https://www.ncbi.nlm.nih.gov/pubmed/37434627 http://dx.doi.org/10.1080/02664763.2022.2068513 |
Ejemplares similares
-
A Bayesian Model for Bivariate Causal Inference
por: Kurthen, Maximilian, et al.
Publicado: (2019) -
Models for association in bivariate survival data.
por: Fujii, Y
Publicado: (1990) -
Analysis of Blood Transfusion Data Using Bivariate Zero-Inflated Poisson Model: A Bayesian Approach
por: Mohammadi, Tayeb, et al.
Publicado: (2016) -
Bayesian modeling of a bivariate toxicity outcome for early phase oncology trials evaluating dose regimens
por: Gerard, Emma, et al.
Publicado: (2021) -
Approximate Bayesian inference in semi-mechanistic models
por: Aderhold, Andrej, et al.
Publicado: (2016)