Cargando…
An improved YOLOv5s model using feature concatenation with attention mechanism for real-time fruit detection and counting
An improved YOLOv5s model was proposed and validated on a new fruit dataset to solve the real-time detection task in a complex environment. With the incorporation of feature concatenation and an attention mechanism into the original YOLOv5s network, the improved YOLOv5s recorded 122 layers, 4.4 × 10...
Autores principales: | Lawal, Olarewaju Mubashiru, Zhu, Shengyan, Cheng, Kui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10332635/ https://www.ncbi.nlm.nih.gov/pubmed/37434602 http://dx.doi.org/10.3389/fpls.2023.1153505 |
Ejemplares similares
-
A simplified network topology for fruit detection, counting and mobile-phone deployment
por: Lawal, Olarewaju Mubashiru, et al.
Publicado: (2023) -
YOLOv5-LiNet: A lightweight network for fruits instance segmentation
por: Lawal, Olarewaju Mubashiru
Publicado: (2023) -
Tomato detection based on modified YOLOv3 framework
por: Lawal, Mubashiru Olarewaju
Publicado: (2021) -
TIA-YOLOv5: An improved YOLOv5 network for real-time detection of crop and weed in the field
por: Wang, Aichen, et al.
Publicado: (2022) -
Detection method of wheat spike improved YOLOv5s based on the attention mechanism
por: Zang, Hecang, et al.
Publicado: (2022)