Cargando…

Artificial Intelligence and Interstitial Lung Disease: Diagnosis and Prognosis

Interstitial lung disease (ILD) is now diagnosed by an ILD-board consisting of radiologists, pulmonologists, and pathologists. They discuss the combination of computed tomography (CT) images, pulmonary function tests, demographic information, and histology and then agree on one of the 200 ILD diagno...

Descripción completa

Detalles Bibliográficos
Autores principales: Dack, Ethan, Christe, Andreas, Fontanellaz, Matthias, Brigato, Lorenzo, Heverhagen, Johannes T., Peters, Alan A., Huber, Adrian T., Hoppe, Hanno, Mougiakakou, Stavroula, Ebner, Lukas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10332653/
https://www.ncbi.nlm.nih.gov/pubmed/37058321
http://dx.doi.org/10.1097/RLI.0000000000000974
Descripción
Sumario:Interstitial lung disease (ILD) is now diagnosed by an ILD-board consisting of radiologists, pulmonologists, and pathologists. They discuss the combination of computed tomography (CT) images, pulmonary function tests, demographic information, and histology and then agree on one of the 200 ILD diagnoses. Recent approaches employ computer-aided diagnostic tools to improve detection of disease, monitoring, and accurate prognostication. Methods based on artificial intelligence (AI) may be used in computational medicine, especially in image-based specialties such as radiology. This review summarises and highlights the strengths and weaknesses of the latest and most significant published methods that could lead to a holistic system for ILD diagnosis. We explore current AI methods and the data use to predict the prognosis and progression of ILDs. It is then essential to highlight the data that holds the most information related to risk factors for progression, e.g., CT scans and pulmonary function tests. This review aims to identify potential gaps, highlight areas that require further research, and identify the methods that could be combined to yield more promising results in future studies.