Cargando…

Clinical Significance of Diffusion Tensor Imaging in Metachromatic Leukodystrophy

Background  Metachromatic leukodystrophy (MLD) is a lysosomal enzyme deficiency disorder leading to progressive demyelination and, consecutively, to cognitive and motor decline. Brain magnetic resonance imaging (MRI) can detect affected white matter as T2 hyperintense areas but cannot quantify the g...

Descripción completa

Detalles Bibliográficos
Autores principales: Amedick, Lucas Bastian, Martin, Pascal, Beschle, Judith, Strölin, Manuel, Wilke, Marko, Wolf, Nicole, Pouwels, Petra, Hagberg, Gisela, Klose, Uwe, Naegele, Thomas, Kraegeloh-Mann, Ingeborg, Groeschel, Samuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Georg Thieme Verlag KG 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10332944/
https://www.ncbi.nlm.nih.gov/pubmed/37054976
http://dx.doi.org/10.1055/a-2073-4178
Descripción
Sumario:Background  Metachromatic leukodystrophy (MLD) is a lysosomal enzyme deficiency disorder leading to progressive demyelination and, consecutively, to cognitive and motor decline. Brain magnetic resonance imaging (MRI) can detect affected white matter as T2 hyperintense areas but cannot quantify the gradual microstructural process of demyelination more accurately. Our study aimed to investigate the value of routine MR diffusion tensor imaging in assessing disease progression. Methods  MR diffusion parameters (apparent diffusion coefficient [ADC] and fractional anisotropy [FA]) were in the frontal white matter, central region (CR), and posterior limb of the internal capsule in 111 MR datasets from a natural history study of 83 patients (age: 0.5–39.9 years; 35 late-infantile, 45 juvenile, 3 adult, with clinical diffusion sequences of different scanner manufacturers) as well as 120 controls. Results were correlated with clinical parameters reflecting motor and cognitive function. Results  ADC values increase and FA values decrease depending on disease stage/severity. They show region-specific correlations with clinical parameters of motor and cognitive symptoms, respectively. Higher ADC levels in CR at diagnosis predicted a disease course with more rapid motor deterioration in juvenile MLD patients. In highly organized tissues such as the corticospinal tract, in particular, diffusion MR parameters were highly sensitive to MLD-associated changes and did not correlate with the visual quantification of T2 hyperintensities. Conclusion  Our results show that diffusion MRI can deliver valuable, robust, clinically meaningful, and easily obtainable/accessible/available parameters in the assessment of prognosis and progression of MLD. Therefore, it provides additional quantifiable information to established methods such as T2 hyperintensity.