Cargando…

Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving

Covalent modification is commonly used to tune the channel size and functionality of 2D membranes. However, common synthesis strategies used to produce such modifications are known to disrupt the structure of the membranes. Herein, we report less intrusive yet equally effective non-covalent modifica...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Yuan, Hu, Ting, Wang, Yuqi, He, Kaiqiang, Wang, Zhuyuan, Hora, Yvonne, Zhao, Wang, Xu, Rongming, Chen, Yu, Xie, Zongli, Wang, Huanting, Gu, Qinfen, Zhang, Xiwang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333198/
https://www.ncbi.nlm.nih.gov/pubmed/37429847
http://dx.doi.org/10.1038/s41467-023-39533-y
_version_ 1785070602732699648
author Kang, Yuan
Hu, Ting
Wang, Yuqi
He, Kaiqiang
Wang, Zhuyuan
Hora, Yvonne
Zhao, Wang
Xu, Rongming
Chen, Yu
Xie, Zongli
Wang, Huanting
Gu, Qinfen
Zhang, Xiwang
author_facet Kang, Yuan
Hu, Ting
Wang, Yuqi
He, Kaiqiang
Wang, Zhuyuan
Hora, Yvonne
Zhao, Wang
Xu, Rongming
Chen, Yu
Xie, Zongli
Wang, Huanting
Gu, Qinfen
Zhang, Xiwang
author_sort Kang, Yuan
collection PubMed
description Covalent modification is commonly used to tune the channel size and functionality of 2D membranes. However, common synthesis strategies used to produce such modifications are known to disrupt the structure of the membranes. Herein, we report less intrusive yet equally effective non-covalent modifications on Ti(3)C(2)T(x) MXene membranes by a solvent treatment, where the channels are robustly decorated by protic solvents via hydrogen bond network. The densely functionalized (-O, -F, -OH) Ti(3)C(2)T(x) channel allows multiple hydrogen bond establishment and its sub-1-nm size induces a nanoconfinement effect to greatly strengthen these interactions by maintaining solvent-MXene distance and solvent orientation. In sub-1-nm ion sieving and separation, as-decorated membranes exhibit stable ion rejection, and proton-cation (H(+)/M(n+)) selectivity that is up to 50 times and 30 times, respectively, higher than that of pristine membranes. It demonstrates the feasibility of non-covalent methods as a broad modification alternative for nanochannels integrated in energy-, resource- and environment-related applications.
format Online
Article
Text
id pubmed-10333198
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-103331982023-07-12 Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving Kang, Yuan Hu, Ting Wang, Yuqi He, Kaiqiang Wang, Zhuyuan Hora, Yvonne Zhao, Wang Xu, Rongming Chen, Yu Xie, Zongli Wang, Huanting Gu, Qinfen Zhang, Xiwang Nat Commun Article Covalent modification is commonly used to tune the channel size and functionality of 2D membranes. However, common synthesis strategies used to produce such modifications are known to disrupt the structure of the membranes. Herein, we report less intrusive yet equally effective non-covalent modifications on Ti(3)C(2)T(x) MXene membranes by a solvent treatment, where the channels are robustly decorated by protic solvents via hydrogen bond network. The densely functionalized (-O, -F, -OH) Ti(3)C(2)T(x) channel allows multiple hydrogen bond establishment and its sub-1-nm size induces a nanoconfinement effect to greatly strengthen these interactions by maintaining solvent-MXene distance and solvent orientation. In sub-1-nm ion sieving and separation, as-decorated membranes exhibit stable ion rejection, and proton-cation (H(+)/M(n+)) selectivity that is up to 50 times and 30 times, respectively, higher than that of pristine membranes. It demonstrates the feasibility of non-covalent methods as a broad modification alternative for nanochannels integrated in energy-, resource- and environment-related applications. Nature Publishing Group UK 2023-07-10 /pmc/articles/PMC10333198/ /pubmed/37429847 http://dx.doi.org/10.1038/s41467-023-39533-y Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Kang, Yuan
Hu, Ting
Wang, Yuqi
He, Kaiqiang
Wang, Zhuyuan
Hora, Yvonne
Zhao, Wang
Xu, Rongming
Chen, Yu
Xie, Zongli
Wang, Huanting
Gu, Qinfen
Zhang, Xiwang
Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving
title Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving
title_full Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving
title_fullStr Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving
title_full_unstemmed Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving
title_short Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving
title_sort nanoconfinement enabled non-covalently decorated mxene membranes for ion-sieving
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333198/
https://www.ncbi.nlm.nih.gov/pubmed/37429847
http://dx.doi.org/10.1038/s41467-023-39533-y
work_keys_str_mv AT kangyuan nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving
AT huting nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving
AT wangyuqi nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving
AT hekaiqiang nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving
AT wangzhuyuan nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving
AT horayvonne nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving
AT zhaowang nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving
AT xurongming nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving
AT chenyu nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving
AT xiezongli nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving
AT wanghuanting nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving
AT guqinfen nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving
AT zhangxiwang nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving