Cargando…
Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving
Covalent modification is commonly used to tune the channel size and functionality of 2D membranes. However, common synthesis strategies used to produce such modifications are known to disrupt the structure of the membranes. Herein, we report less intrusive yet equally effective non-covalent modifica...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333198/ https://www.ncbi.nlm.nih.gov/pubmed/37429847 http://dx.doi.org/10.1038/s41467-023-39533-y |
_version_ | 1785070602732699648 |
---|---|
author | Kang, Yuan Hu, Ting Wang, Yuqi He, Kaiqiang Wang, Zhuyuan Hora, Yvonne Zhao, Wang Xu, Rongming Chen, Yu Xie, Zongli Wang, Huanting Gu, Qinfen Zhang, Xiwang |
author_facet | Kang, Yuan Hu, Ting Wang, Yuqi He, Kaiqiang Wang, Zhuyuan Hora, Yvonne Zhao, Wang Xu, Rongming Chen, Yu Xie, Zongli Wang, Huanting Gu, Qinfen Zhang, Xiwang |
author_sort | Kang, Yuan |
collection | PubMed |
description | Covalent modification is commonly used to tune the channel size and functionality of 2D membranes. However, common synthesis strategies used to produce such modifications are known to disrupt the structure of the membranes. Herein, we report less intrusive yet equally effective non-covalent modifications on Ti(3)C(2)T(x) MXene membranes by a solvent treatment, where the channels are robustly decorated by protic solvents via hydrogen bond network. The densely functionalized (-O, -F, -OH) Ti(3)C(2)T(x) channel allows multiple hydrogen bond establishment and its sub-1-nm size induces a nanoconfinement effect to greatly strengthen these interactions by maintaining solvent-MXene distance and solvent orientation. In sub-1-nm ion sieving and separation, as-decorated membranes exhibit stable ion rejection, and proton-cation (H(+)/M(n+)) selectivity that is up to 50 times and 30 times, respectively, higher than that of pristine membranes. It demonstrates the feasibility of non-covalent methods as a broad modification alternative for nanochannels integrated in energy-, resource- and environment-related applications. |
format | Online Article Text |
id | pubmed-10333198 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-103331982023-07-12 Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving Kang, Yuan Hu, Ting Wang, Yuqi He, Kaiqiang Wang, Zhuyuan Hora, Yvonne Zhao, Wang Xu, Rongming Chen, Yu Xie, Zongli Wang, Huanting Gu, Qinfen Zhang, Xiwang Nat Commun Article Covalent modification is commonly used to tune the channel size and functionality of 2D membranes. However, common synthesis strategies used to produce such modifications are known to disrupt the structure of the membranes. Herein, we report less intrusive yet equally effective non-covalent modifications on Ti(3)C(2)T(x) MXene membranes by a solvent treatment, where the channels are robustly decorated by protic solvents via hydrogen bond network. The densely functionalized (-O, -F, -OH) Ti(3)C(2)T(x) channel allows multiple hydrogen bond establishment and its sub-1-nm size induces a nanoconfinement effect to greatly strengthen these interactions by maintaining solvent-MXene distance and solvent orientation. In sub-1-nm ion sieving and separation, as-decorated membranes exhibit stable ion rejection, and proton-cation (H(+)/M(n+)) selectivity that is up to 50 times and 30 times, respectively, higher than that of pristine membranes. It demonstrates the feasibility of non-covalent methods as a broad modification alternative for nanochannels integrated in energy-, resource- and environment-related applications. Nature Publishing Group UK 2023-07-10 /pmc/articles/PMC10333198/ /pubmed/37429847 http://dx.doi.org/10.1038/s41467-023-39533-y Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Kang, Yuan Hu, Ting Wang, Yuqi He, Kaiqiang Wang, Zhuyuan Hora, Yvonne Zhao, Wang Xu, Rongming Chen, Yu Xie, Zongli Wang, Huanting Gu, Qinfen Zhang, Xiwang Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving |
title | Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving |
title_full | Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving |
title_fullStr | Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving |
title_full_unstemmed | Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving |
title_short | Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving |
title_sort | nanoconfinement enabled non-covalently decorated mxene membranes for ion-sieving |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333198/ https://www.ncbi.nlm.nih.gov/pubmed/37429847 http://dx.doi.org/10.1038/s41467-023-39533-y |
work_keys_str_mv | AT kangyuan nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving AT huting nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving AT wangyuqi nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving AT hekaiqiang nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving AT wangzhuyuan nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving AT horayvonne nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving AT zhaowang nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving AT xurongming nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving AT chenyu nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving AT xiezongli nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving AT wanghuanting nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving AT guqinfen nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving AT zhangxiwang nanoconfinementenablednoncovalentlydecoratedmxenemembranesforionsieving |