Cargando…
Machine learning dislocation density correlations and solute effects in Mg-based alloys
Magnesium alloys, among the lightest structural materials, represent excellent candidates for lightweight applications. However, industrial applications remain limited due to relatively low strength and ductility. Solid solution alloying has been shown to enhance Mg ductility and formability at rela...
Autores principales: | Salmenjoki, H., Papanikolaou, S., Shi, D., Tourret, D., Cepeda-Jiménez, C. M., Pérez-Prado, M. T., Laurson, L., Alava, M. J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333208/ https://www.ncbi.nlm.nih.gov/pubmed/37429877 http://dx.doi.org/10.1038/s41598-023-37633-9 |
Ejemplares similares
-
Machine learning plastic deformation of crystals
por: Salmenjoki, Henri, et al.
Publicado: (2018) -
Quenched pinning and collective dislocation dynamics
por: Ovaska, Markus, et al.
Publicado: (2015) -
The role of dislocation-solute interactions on the creep behaviour of binary Mg–RE alloys
por: Li, Jing, et al.
Publicado: (2021) -
Effects of precipitates and dislocation loops on the yield stress of irradiated iron
por: Lehtinen, Arttu, et al.
Publicado: (2018) -
Propagating bands of plastic deformation in a metal alloy as critical avalanches
por: Mäkinen, Tero, et al.
Publicado: (2020)